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1. Introduction 

This paper discusses the implementation of a Linear 
Quadratic Regulator (LQR) optimal controller for an 

active suspension system on a standard mid size 

sedan. A detailed analysis of the construction and 

verification of the vehicle model is included.  The 

goal of the LQR controller is to improve passenger 

ride comfort by minimizing the effect of external 

disturbances felt by the passenger such as road 

irregularities, cornering and braking. This is 

accomplished by actively applying vertical forces in 

the suspension. As a result, these systems can be used 

to minimize vehicle body roll, vertical accelerations 
experienced by the passengers, and improve overall 

vehicle handling. 

 Such systems are becoming increasingly common on 

both passenger and commercial vehicles. For 

example, the active suspension system developed by 

Bose Corporation is utilized in many of the luxury 

sedans in today‘s market.[1]  

 

2. System Description 

 
Figure 1.1: Full Car Model with suspension units [2] 

 

The vehicle model includes a suspension unit at each 

corner of the vehicle which consists of a spring, 

damper and a force actuator as shown in Figure 1.1. 

The constitutive behavior of these elements are non-

linear and the linearization process is discussed in 

section 3.2.  

 
Figure 1.2: Coordinate System for the rigid body[1] 

 
The vehicle chassis is modeled as a rigid body with 
body fixed coordinates, U,V,W attached at the Center 

of Gravity (CG) and aligned in its principal directions 

as shown in Figure 1.2. The body has mass, m, and 

moments of inertia Jr (roll) about the U-axis, Jp 

(pitch) about the V-axis, and Jy (yaw) about the W-

axis. The CG is located a distance ‗a‘ from the front 

axle, ‗b‘ from the rear axle, and ‗h‘ from the ground. 

The half-width of the vehicle is w/2.  

 

The suspension actuators are implemented simply as 

controllable force inputs.  The physical method of 
force actuation is not discussed in this paper. This 

will allow more flexibility once the control system 

has been designed for selecting the most appropriate 

actuator. The force actuation can be accomplished 

using a variety of components.  Some examples 

include electromechanical actuators, hydraulic 

actuators, and pneumatic actuators.  Each system has 

its own distinct strengths such as response time and 

power requirements.   

 

 

 



2.1 Parameter Definition 

2.1.1  Physical Parameters  

Table 2.1:  Physical Parameters 
Variable Parameter 

𝛿 Steering Angle (rad) 

𝑎 Distance from CG to Front Axle (m) 

𝑏 Distance from CG to Rear Axle (m) 

𝑏𝒔𝑭 Damper Coefficient – Front (N-s/m) 

𝑏𝒔𝑹 Damper Coefficient – Rear (N-s/m) 

𝐹𝑏𝑟𝑎𝑘𝑒  Total Braking Force (N) 

𝐹𝑝𝑖𝑡𝑐 ℎ  Pitching Force on CG (N) 

𝐹𝑟𝑜𝑙𝑙  Rolling Force on CG (N) 

𝐹𝐹𝑅  Controlled Actuator Output Front Right (N) 

𝐹𝐹𝐿  Controlled Actuator Output Front Left (N) 

𝐹𝑅𝑅  Controlled Actuator Output Rear Right (N) 

𝐹𝑅𝐿  Controlled Actuator Output Rear Left (N) 

ℎ Height of CG from Road (m) 

𝐽𝒑 Pitch Moment of Inertia (kg/m
2
) 

𝐽𝒓 Roll Moment of Inertia (kg/m
2
) 

𝑘𝒕 Tire Stiffness (N/m) 

𝑘𝒔 Spring Stiffness (N/m) 

𝑚𝒔 Mass of Vehicle (kg) 

𝑚𝒖𝒔 Unsprung Mass (kg) 

𝑈 Forward Velocity (m/s) 

𝑉𝐶𝐺(𝑡) Vertical Velocity of CG (m/s) 

𝑉𝐹𝑅(𝑡) Velocity Input Front Right (m/s) 

𝑉𝐹𝐿(𝑡) Velocity Input Front Left (m/s) 

𝑉𝑅𝑅(𝑡) Velocity Input Rear Right (m/s) 

𝑉𝑅𝐿(𝑡) Velocity Input Rear Left (m/s) 

𝑤 Track Width (m) 

 

2.1.2  State Variables Definition 

Table 2.2: State Variable Definitions 

Variable Parameter 
𝐿𝑅 Roll Angular Momentum (N.m.s) 

𝐿𝑃 Pitch Angular Momentum (N.m.s) 

𝑝𝑢𝑠𝑅𝑅  Unsprung Momentum Rear Right (kg.m/s) 

𝑝𝑢𝑠𝑅𝐿  Unsprung Momentum Rear Left (kg.m/s) 

𝑝𝑢𝑠𝐹𝑅  Unsprung Momentum Front Right (kg.m/s) 

𝑝𝑢𝑠𝐹𝐿  Unsprung Momentum Front Left (kg.m/s) 

𝑝𝑉𝐶𝐺  Vertical Momentum of CG (kg.m.s) 

𝑥𝑇𝑅𝑅  Tire Deflection Rear Right (m) 

𝑥𝑇𝑅𝐿 Tire Deflection Rear Left (m) 

𝑥𝑇𝐹𝑅  Tire Deflection Front Right (m) 

𝑥𝑇𝐹𝐿 Tire Deflection Front left (m) 

𝑥𝑆𝑅𝑅 Spring Deflection Rear Right (m) 

𝑥𝑆𝑅𝐿  Spring Deflection Rear Left (m) 

𝑥𝑆𝐹𝑅  Spring Deflection Front Right(m) 

𝑥𝑆𝐹𝑅  Spring Deflection Front Left (m) 

 

 

 

 

 

 

 

2.2 Inputs 

The system has ten inputs, six of which are 
exogenous and the others controllable.  These inputs 

are: 

Exogenous: 

 The road velocity inputs experienced at each 
wheel  

 Vehicle pitch force (due to 

accelerating/braking/cornering the vehicle) 

 Vehicle roll input  (due to cornering the 

vehicle) 

Controllable: 

 Actuator forces applied to the suspension 

system at each corner of the vehicle 

In this simulation, the road inputs, vehicle pitch, and 

roll will be simulated based on three different driving 

scenarios: 

1. Driving over a ―speed bump‖ by generating 

a vertical velocity profile input 

2. Braking at 1 g by applying the appropriate 

pitch moment to the vehicle center of 

gravity 

3. Cornering by applying the appropriate pitch 

and roll moment to the vehicle center of 

gravity 

 

2.3. Outputs 

The model used in this simulation is composed of 15 

separate state variables, however not all of these 

states are relevant to the control of an active 

suspension system.   

The ride quality can be quantified by examining the 

vertical and angular accelerations of the vehicle 

body, as well as the ability for the vehicle to remain 

level regardless of operating conditions.  [7]   

The 15 states in this model each correspond to the 

state of an energy storing element. The following 
states are observed using the C matrix: 

 The deflection of the suspension springs 

 The deflection of the tire springs 

 The vertical and angular velocities of the 

vehicle‘s center of gravity 

 



3. System Model  

3.1.1.  Modeling Methodology  

Modeling the aforementioned system began with the 
creation of a 'bond graph' of the system. Bond graphs 

are a concise pictorial representation of all types of 

interacting energy domains, and are an excellent tool 

for representing vehicle dynamics with associated 

control hardware[1].  Each bond represents a pair of 

signals (effort and flow) whose product is the 

instantaneous power of the bond.  In the case of a 

mechanical system, effort and flow translate into 

force and velocity respectively. The 'half arrow' sign 

convention defines the direction of energy flow. The 

energy storing elements in the bond graph define the 
number of state variables in the system and using the 

established methods in bond graphing, state equations 

can be derived directly from the bond graph [4].  

 

Figure 1.1: Schematic of a single suspension unit and the 

corresponding bond graph [1] 

For illustration purpose, the schematic and the 

corresponding bond graph for a single suspension 

unit  is shown in Figure 3.1.  Please refer to 

Appendix A for the complete bond graph of the 

system.  

The set of state equations were derived using the 

complete bond graph as further discussed in section 

3.3. State-space matrices (A,B,C,D) were derived 

using these system equations and are discussed 

further in section 3.4. 

3.1.2. Underlying Assumptions 

The objective of the model created was to assist in 

the development of a control system for the vehicle‘s 

active suspension system.  A high level of detail 

could have been included in the development of the 

model, however assumptions were made to simplify 

the model.  These simplifications help remove 

unnecessary details that are not of interest when 

optimizing the vertical dynamics of the vehicle.  The 
assumptions also help reduce the computational 

requirements of the simulation. 

The following assumptions were made to simplify the 

model: 

 The body of the vehicle is rigid. 

 The lateral and longitudinal motion of the 

tires is negligible compared to their 

vertical motion.   

 The vehicle is a neutral steer car[1,2] 

 The vehicle is not skidding 

Because lateral and longitudinal dynamics have been 

removed from the model, it was important to 
approximate their effects on the vertical behavior of 

the model during braking/cornering.  The 

approximated braking/cornering forces are applied to 

the CG of the vehicle, as discussed in more detail in 

the Simulation section of the paper (Section 4.3-4.4). 

 

3.2  Linearization 

A strength of bond graph modeling is the ability to 

use a single model for both linear and nonlinear 

systems over multiple energy domains.  The ordinary 

differential equations that describe the system are 

extracted directly from the bond graph using a 

straightforward procedure.  Each component has 

particular constitutive laws that describe its behavior 

and are tied together at the time of equation 
formulation.  The switch from a nonlinear to a linear 

component comes from a simple substitution in the 

bond graph equations.      

The modeled components are in reality nonlinear; 

however a standard linearization process can be 

executed for each component.  Figure 4.1 shows a 

hypothetical tire deflection curve in red and its 
linearization.   

 

Figure 4.1: Tire Deflection Curve and Linearization 

 

 



A tire is unable to ―pull‖ (provide negative force) 

since it is not attached to the ground.  In addition, the 

positive force that it supplies is nonlinear.  To 

linearize this tire, the equilibrium point on the actual 

curve must be located.  For small deviations from the 

equilibrium point, the constitutive behavior of the 
spring may be considered linear as shown in blue.  

The linear tire is a particularly complicated 

component due to its inability to prevent the 

application of negative force.  This must be dealt 

with by adding logic into the simulation code, or by 

scaling the inputs to prevent tire lift-off.   

The suspension springs, and dampers would typically 

undergo a similar linearization process.  This 
particular model however is based loosely on actual 

vehicle data of a mid size sedan as mentioned in 

reference [1], and the original equations that were 

linearized to provide the constants tabulated in table 

1 were unavailable.[1]   

The following assumptions about linearity were made 

in our model: 

 Each tire is modeled as a single linear spring 

 Each of the suspension springs are linear 

 Every linear spring element (tire and 

suspension) has an equilibrium displacement 

calculated by the static vehicle model sitting 

in a gravity acceleration field 

 Each of the suspension dampers are linear 

 Each of the active suspension force actuators 
are linear 

The linearity of this model permits the use of a state-

space representation of the system. This results in 

first-order explicit differential equations of the form 

shown in Equation 4.1 that are easily numerically 

integrated.   

𝑋  = 𝐴𝑋 + 𝐵𝑈             (4.1) 

 

3.3 State Variables & Linearized System 

Equations  

As discussed previously in section 3.1, using the 

bond graph, 15 state variables were identified and 

linear state equations were obtained.  Please refer to 

Appendix B for the complete set of state equations. 

For more information on the procedure of deriving 
state equations using bond graphs, please refer to 

reference [4].   

 

3.4 State-Space Representation 

Please refer to Appendix C for the complete set of 

state space representation matrices obtained from the 

linearized state equations.  

4. Simulation 

Table 4.1 shows the linear parameters used for the 

vehicle simulation, which are loosely based on a 

standard sedan [1].  These parameters were used to 
populate the state-space representation of the model 

shown in Appendix C.  A Simulink model was 

constructed which allowed inputs and outputs to be 

applied to/recorded from a state-space block.  The 

Simulink block diagram and the state-space A,B,C,D 

matrix population code can be viewed in Appendix D 

and G respectively. 

         Table 4.1: Parameter Values for Simulation 

Parameter Value 

Vehicle  

Distance from Cg to front axle (a) 1.17m 

Distance from Cg to rear axle (b) 1.68m 

Height of Cg above the road (h) 0.55m 

Track (w) 1.54m 

Mass of the car (ms) 1513 kg 

Roll moment of inertia (Jr) 637.26 kgm
2
 

Pitch moment of inertia (Jp) 2443.26 kgm
2
 

Anti-roll bar  stiffness (ka) 1.5 x 10
6
 N/m 

  

Tire  

Unsprung mass (mus) 38.42 kg 

Tire stiffness (kt) 150,000 N/m 

  

Suspension  

Suspension stiffness (ks) 14,900 N/m 

Damper coefficients (bs) 475 Ns/m 

  

 

 

4.1  Model Validation using a quarter-car 

Before complicated full car simulations could be 

conducted, it was necessary to ensure that basic 

properties indicative of the quarter car model were 

evident in the simulation results.  To simulate the 

model as a quarter car, the model was made 

geometrically symmetric by setting distance ―a‖ 

equal to distance ―b‖, effectively placing the model‘s 

center of gravity symmetrically between the front and 

rear of the vehicle.  By inputting the same velocity at 

each corner of the vehicle, the body of the vehicle 

exhibited only vertical motion, represented by a 
simple mass-spring-damper system, as shown below 

in Figure 4.1. 



 
Figure 4.1: Quarter Car Model 

 

Analysis of this simple spring-mass-damper system 

produced Equation 4.1 and 4.2 which, when 
evaluated with the parameters listed in Table 4.1, 

resulted in a body natural frequency of 0.95Hz, and a 

wheel natural frequency of 10.4Hz. [4] 

        𝐟𝐛𝐨𝐝𝐲 =  
𝟏

𝟐𝛑
  

𝐤𝐬∗𝐤𝐭

 𝐤𝐬+𝐤𝐭 ∗𝐦𝐛/𝟒
= 𝟎. 𝟗𝟓𝐇𝐳            

(4.1) 

          fwheel =  
1

2π
  

ks +kt

mus
= 10.4 Hz       (4.2) 

The vehicle model was given a velocity step input of 

5 m/s at each corner, lasting for 0.2 seconds.  The 

abrupt application of velocity excited the faster wheel 

hop frequency, which was quickly damped giving 
way to the slower body oscillations as seen below in 

Figure 4.2.  A Fast Fourier Transform was applied to 

the resulting suspension displacement data, and the 

dominant frequency was found to be 0.95Hz which 

correlates with the anticipated value calculated in 

Equation 4.1. 

 
Figure 4.2: Body Natural Frequency FFT 

 

To focus on recording the wheel natural frequency, 

the Fast Fourier Transform was concentrated on the 

first quarter second of the simulation when fast 

oscillations were prevalent.  The result, shown below 

in Figure 4.3 is in agreement with the frequency 

predicted by Equation 4.2.  The full vehicle model 

behaved as expected when simulated as a quarter car. 

 
Figure 4.3: Wheel Hop natural Frequency FFT 

 

 

4.2  Scenario 1 – Road Irregularity 

To evaluate the vehicle‘s performance over road 

irregularities, a triangular profile speed bump was 

constructed with a width of 20cm, and a height of 

5cm.  The vehicle was simulated driving over the 

bump at 5m/s (18 km/h), producing the tire 

displacement plot shown In Figure 4.4.  The front of 

the vehicle encounters the bump first, with the rear of 

the vehicle shortly following.   

 
Figure 4.4: Tire Displacement Driving Over Speed-Bump at 

5m/s 

 

As described in the Section 3.2, the linearized tire 

may produce force in both compression and tension, 

while a true tire may only produce force while 

compressed.  Driving over a bump too quickly with a 
physical vehicle will cause the tires to leave the 

ground momentarily at the exit of the bump. Figure 

4.4 shows the displacement of the front and rear tires 

of the vehicle from equilibrium. As it can be 

observed, the front tires of the vehicle remain in 

contact with the ground.  Unfortunately, the rear tires 



of the vehicle lift off the ground shortly after 

encountering the bump. This behavior must be 

detected and avoided as the linear tire model used 

here does not account for such situations.   

 

4.3 Scenario 2 - Braking 

To understand how the uncontrolled model reacted to 

braking, a step input equivalent to the force of 

braking at 1.0 g (calculated using Equation 4.3) was 

applied to the pitch axis of the vehicle.   

𝐹𝑏𝑟𝑎𝑘𝑒 =  𝑚𝑢𝑠 + 𝑚𝑢𝑠  ∗ 𝑎                        (4.3) 

𝐹𝑏𝑟𝑎𝑘𝑒 =  1513𝑘𝑔 + 4 ∗ 38.42𝑘𝑔 ∗
9.81𝑚

𝑠2

= 16350𝑁 
 

The resulting pitch angle, and angular acceleration of 

the vehicle about its center of gravity are show below 

in Figure 4.5.  During the transient period following 

the application of the force, the vehicle experiences 

oscillating angular accelerations about the pitch axis 

which would be uncomfortable to the occupants of 

the vehicle. 

 
Figure 4.5: 1.0 g Braking 

 

These oscillations are likely exaggerated due to the 

instantaneous nature of a step input, and would likely 

be reduced during a physical braking test.  These 

oscillations are mostly damped out of the system 

within 5 seconds, and the vehicle is left with a steady 

state pitch angle of 3.3 degrees.  The application of a 

control system will have two objectives during 

braking.  Firstly, it will work to reduce the angular 

acceleration experienced due to the application of 

brakes.  Secondly, it will keep the vehicle as level as 

possible, minimizing the steady state angle produced 

from the braking force. 

 

4.4 Scenario 3 - Constant Radius Turn 

 
Figure 4.6: Corner Force Approximation Diagram 

 

Unlike braking, cornering produces a moment about 

the roll and pitch axis.  This is due to the fact that tire 

forces act approximately perpendicular to the plane 

of the tire.  Figure 4.6 shows the creation of 

transverse forces due to the steering angle, delta.  

The vehicle was simulated as completing a 0.5 g 

corner with a forward velocity of 22.2m/s (80km/hr).  

Neglecting the tire slip angles, the required steering 

angle, delta, can be approximated using Equation 4.4. 

 𝛿 = 𝑎𝐿𝑂𝑁𝐺 ∗
𝑎+𝑏

𝑈2                           (4.4) 

 𝛿 = 4.9  
𝑚

𝑠2
 ∗

 1.17+1.68 𝑚

52(
𝑚

𝑠2)
= 0.5586 rad         

The transverse and longitudinal forces, which will be 

applied to the pitch and roll axis of the vehicle‘s 

center of gravity were then calculated using Equation 

4.5 and 4.6. 

      𝐹𝐿𝑜𝑛𝑔 = 𝑚𝑡𝑜𝑡𝑎𝑙 ∗ 𝑎𝑐𝑜𝑟𝑛𝑒𝑟      (4.5) 

𝐹𝐿𝑜𝑛𝑔 = 1667𝑘𝑔 ∗ 4.9  
𝑚

𝑠2
 = 8168𝑁 

 

     𝐹𝑇𝑟𝑎𝑛𝑠 =
𝐹𝐿𝑜𝑛𝑔 ∗sin (𝛿)

1+cos (𝛿)
   (4.6) 

𝐹𝑇𝑟𝑎𝑛𝑠 =
8168 𝑁 ∗ sin(0.5586)

1 + cos(0.5586)
= 2342𝑁 

 



 
Figure 4.8: Suspension From Equilibrium, 0.5g Cornering 

 

We simulated the vehicle with the forces discussed 
and produced the above plot.  These data show that 

weight was transferred diagonally from the left rear 

of the vehicle, to the right front of the vehicle.  This 

is the expected outcome of a physical vehicle which 

is making a left turn.  It is also important to note that 

the suspension displacement of 3.3cm is realistic for 

a road going vehicle, showing that the parameter 

values used in Table 4.1 are reasonable.  The 

negative value for the left rear suspension 

displacement represents unloading of the suspension, 

as a displacement of 0 m signifies the equilibrium 
position of the suspension system due to the vehicle 

sitting in a 1 g gravity field. 

 

5.  Control System Design 

The objective of the control system was to reduce the 

roll and pitch angles of the vehicle and minimize the 
vertical accelerations experienced by the occupants 

of the vehicle.  A Linear Quadratic Regulator (LQR) 

control strategy was selected to accomplish these 

goals on our Multi-Input, Multi-Output system 

(MIMO) linear system.  The following section will 

detail the methodology used to implement an LQR 

controller. 

 

5.1 Stability 

Stability of the system was checked by determining 

the Eigen-values of the A matrix.  All except for one 

of the eigen-values had a negative real component.  

The system‘s instability arose from a zero eigen-

value when analyzing the open-loop dynamics.  This 

zero eigen-value mode shape is indicative of rigid 

body analysis.  By compressing the springs on one 

diagonal of the car, and extending opposing springs 

an equal amount, the zero eigen-value mode shape 

can be achieved.  Releasing the system from this state 

will cause no chassis motion, but still allows for 

oscillatory motion of the suspension system.  
Unfortunately, this mode cannot be removed when 

dealing with rigid body motion, and full 

controllability of the system must be achieved for the 

implementation of an LQR controller guaranteeing 

stable closed loop dynamics. 

 

5.2  Controllability   

Controllability was observed by determining the rank 

of  the controllability matrix shown as Equation 5.1 

where B and A are the state space matrices as shown 

in Appendix C and n is the number of states; 15 for 

this model.  It was observed that there are 9 

uncontrollable states in the system using the function 

ctrb() in Matlab.   

C= 𝐵  𝐵𝐴  𝐵𝐴2 …………𝐵𝐴𝑛−1             (5.1) 

5.2.1  Numerical Considerations 

This large quantity of uncontrollable states was 
surprising, and was likely the result of the matrix 

coefficients in the A matrix spanning more than 6 

orders of magnitude.  The poor conditioning of this 

matrix may have introduced numerical error into the 

―ctrb‖ Matlab function used to test controllability.  

This numerical error was confirmed by replacing 

every parameters shown in Table 4.1 with the value 

of one.  Doing so greatly improved the condition of 

the A matrix, and when the Matlab ―ctrb‖ function 

was utilized, it returned a controllability matrix of 

rank 1.  The parameters altered were simply spring 

rate constants, damping constants, masses, and 
moments of inertia.  Changing their values should 

have had no effect on the rank of the resulting 

controllability matrix.  How can the numerical error 

due to the ill-condition of the A matrix be prevented? 

Matlab functions such as modred, mineral, sminreal 

and balreal were utilized to attempt to correct the 

numerical error, but unfortunately they failed to 
produce a controllable system. 

5.2.2  System Reduction  

The full 15-state system was uncontrollable and 

marginally unstable which prevented successful LQR 

control implementation.  To simplify the problem and 

gain controllability, the model was significantly 
reduced.  Figure 5.1 shows the reductions made to the 



system bond graph.  These reductions are analogues 

to removing the tires and un-sprung mass of the 

vehicle.  The vehicle‘s suspension was now modeled 

as being attached directly to the road surface.  The 

simplified model reduced the number of states from 

15 to only 7. 

 
Figure 5.1: Simplified Bond Graph 

Before the simplified model could be controlled, it 

was necessary to investigate how it performed 

compared to the original model.  Figure 5.2 shows 
the original and simplified models‘ suspension 

response to the bump input discussed previously in 

Section 4.2.  The abrupt application of the bump 

excited high speed oscillations in the original model 

due to the wheel hop natural frequency of the un-

sprung mass discussed in Section 4.1. The simplified 

model removes the un-sprung mass as well as the tire 

spring, and does not exhibit high speed oscillations.  

The high speed oscillations are quickly damped out, 

leaving only the slow speed body oscillations.  Both 

the original and simplified model exhibit similar slow 

speed body oscillatory motion, but the removal of the 
high speed dynamics from the system makes the 

simplified model unsuitable for controllers designed 

for bump disturbances. 

 
Figure 5.2: Original and Simplified Model Response to “Speed 

Bump” 

 

The simplified model is however suitable for 

controllers designed against cornering and braking 

disturbances.  Figure 5.3 shows the two models‘ 

response to a step input equivalent to 1g of braking 

force.  The simplified model closely approximated 

the original model‘s dynamics.  Removing the tire 
springs effectively removed a spring in series, which 

stiffened the simplified model slightly.  It is no 

surprise that the simplified model exhibited slightly 

less steady state pitch when compared to the original 

model.  The simplified model is suitable for 

controllers designed to encounter cornering and 

braking disturbances. 

 
Figure 5.3: Original and Simplified Model Response to a 1g 

Braking Disturbance 

 

5.2.3  Controllable Input “Trick” 

Unfortunately, the reduced system had a 

controllability matrix with rank 6 out of 7 total states.  

The four force actuators situated at each corner of the 

vehicle were not capable of fully controlling the 

system.  To attempt to gain controllability, the 

exogenous inputs were included with the controllable 

inputs in the formulation of the controllability matrix.  
The inclusion of these extra inputs produced a full 

rank controllability matrix, and LQR control could be 

designed.   

It is important to note that the inclusion of inputs, 

which the system will have no control over, into the 

formulation of an LQR controller has broken the 

theory guaranteeing stable closed loop dynamics.  

The next section will detail precautions taken to 
minimize the risk of instability. 

5.3  LQR Controller Design 

The optimal state-feedback controller, Linear 

Quadratic Regulator was considered the best solution 

for the following reasons. 

1. The system is modeled as Linear and it 

is Time Invariant (LTI). 



2. The desired state does not vary with 

time and it is constant at equilibrium. 

(Regulator problem. Not a tracking 

problem.) 

3.  The need to minimize the actuator 

force and thus actuator power 
consumption. 

 

The use of a LQR controller allowed us to achieve all 

our performance requirements as discussed in Section 

5.3.1. 

 

5.3.1  Design Goals 

As discussed previously, the main goal of an active 
suspension system is to keep the vehicle as level as 

possible while minimizing the vertical accelerations 

caused due to road inputs.  The passenger 

acceleration has been used here as an indicator of ride 

comfort. Therefore the effort was taken to keep the 

vertical acceleration within 0.98 ms-2.   

To quantify these abstract design goals commercial 
systems such as the Bose Suspension System [6] and 

systems discussed in reference [8] and [9] were 

compared.  Suspension spring deflection limits were 

dictated by the actual mechanical limits of a 

suspension system in a mid-size sedan.  The 

parameters chosen represent the maximums that a 

driver is expected to encounter in non-emergency 

situations, and a driver is unlikely to physically 

perceive angles less than one degree.  The finalized 

design goals are shown in Table 5.1.  

Table 5.1 : Controller Design Goals 

Parameter Value 

Vehicle Pitch 1.0 deg. max. 

Vehicle Roll 1.0 deg. max. 

Sprung mass acceleration 0.98 ms-2 max. 

Suspension Spring deflection 0.2 m 

Settling Time  within 0.25s 

Rise Time Within 0.1s 

 

5.3.2  State-Space Expansion 

The control system design objectives discussed in 

Section 5.3.1 focus on the pitch and roll angles of the 

model.  Unfortunately, the 7-state representation of 

the model had pitch and roll angular velocity states.  

To allow the controller to directly target the body 

angles, instead of angular velocities, the state-space 

representation of the model was expanded by two 

states, pitch angle and roll angle.  Equations 5.1 and 

5.2 show the two additional state equations. 

𝜔𝑝 = 𝜃𝑝
 =  𝐿𝑝/𝐽𝑝   (5.1) 

𝜔𝑟 = 𝜃𝑟
 =  𝐿𝑟/𝐼𝑟    (5.2) 

 

5.3.3  Quadratic Cost Function  

The cost function used to generate the LQR gain 

matrix is shown below in Equation 5.3.  

𝐽 =   𝑥𝑇𝑅𝑥 + 𝑢𝑇𝛬𝑢 𝑑𝑡
𝑇

𝑜
    (5.3) 

The state and input penalization matrices are shown 

as Equations 5.4 and 5.5.   

𝑅 =

 
 
 
 
 
 
 
 
 

1
1

1
1

1
1

1
𝑃

𝑅  
 
 
 
 
 
 
 
 

 (5.4) 

𝛬 =

 
 
 
 
 
 
 
 
 
 
1𝑒5

1𝑒5
1𝑒5

1𝑒5
1𝑒5

1𝑒5
1

1
1

1  
 
 
 
 
 
 
 
 
 

 

                          (5.5) 

All off diagonal terms in the state and input 

penalization matrices were left as zero.  These terms 

represent penalization of combinations of different 

states or inputs.  The first six diagonal terms of the 

input weighting matrix (R) penalize the use of the 

exogenous inputs, of which the controller has no 

physical control over.  To minimize the use of such 

inputs, they were penalized by five orders of 

magnitude compared to the four force actuator inputs 

which can actually be controlled.  The effects of this 

penalization are discussed in Section 6.1.2. 

The 8th and 9th diagonal coefficients of the state 

weighting matrix represent the penalization of pitch 

angle and roll angle respectively.  By changing the 

weighting of these coefficients compared to the other 

coefficients in the input and state weighting matrices, 

the closed loop dynamics of the system may be 

augmented. 

Using the input and state weighting matrices, in 

conjunction with the open loop A and B matrices of 



the reduced system, a gain matrix, K, was generated 

using Matlab‘s LQR command. 

 

5.3.4  LQR Controller Implementation 

The Simulink model used to implement the gain 

matrix produced by the matlab LQR routine can be 

found in Appendix E.  Disturbances are fed into the 

state-space block, which transforms them into outputs 

based on the open loop system dynamics.  The 

outputs are then fed back into the gain matrix 
produced by the LQR Matlab routine.  This gain 

matrix transforms the outputs of the system into 

desired inputs to control the system, which are fed 

back into the state-space block.   

Two control architecture scenarios were studied.  The 

first allowed for control over the four force actuators, 

as well as the six exogenous inputs.  In reality, the 

controller would have no influence over the six 
exogenous inputs, and the second scenario severs this 

connection. 

 

6.  Controlled Results 

This sections studies the effects of removing the link 

between the controller and the six exogenous inputs 
which it does not physically have control over.  The 

pitch and roll weighting coefficients were set to the 

relatively large values of 1,000,000 so that the 

controller would work to minimize the pitch and roll 

angles of the car.   

6.1  Scenario 1: Ten Controllable Inputs 

The LQR controller was designed with a B matrix 

allowing for control over all ten inputs (including the 

6 exogenous inputs).  This section studies the effects 

of allowing the feedback control of all 10 inputs. 

6.1.1  Identity Input Penalization Matrix 

As discussed in Section 5.3.3, the input weighting 
matrix was designed to minimize the utilization of 

the 6 exogenous inputs by the LQR controller.  

Figures 6.1 though 6.4 show the response of the 

model when the input weighting matrix was left as 

identity.  Figure 6.1 shows that the controller was 

able to reduce the pitch angle of the vehicle to less 

than 1.6x10^-4 degrees.    

 
Figure 6.1: Pitch Angle Response to 1g Braking – 10 

Controllable Inputs 

 

Figure 6.2 shows force actuators had very little 

influence on achieving the impressively reduced roll 

angle, with force inputs of less than 0.01N. This is 

concerning, as these actuators are the only physical 

means that the controller has to influence the vehicle 

dynamics. 

 

 
Figure 6.2: Force Actuator Response to 1g Braking – 10 

Controllable Inputs 

 

Figures 6.3 and 6.4 give insight into how the 

impressively small roll angle was achieved. Figure 

6.3 shows that upon the application of the braking 

step input, the controller has requested spikes of the 

front and read velocity inputs.  Integrated over time, 

these spikes correspond with changing the vertical 

position of the front and rear ground where the 

vehicle is attached.  Figure 6.4 shows that the 
controller has changes the vertical position of the 

ground to effectively compress, and extend the front 

and rear vehicle suspension respectively.  These 

spring displacements resist the roll angle caused by 

the braking step input, and the vehicle remains 

essentially level.  Although the controller has 

effectively limited the vehicle‘s roll, it has done so 

using inputs to which it has no physical control. 



 
Figure 6.3: Ground Velocity Input Response to 1g Braking – 

10 Controllable Inputs 

 

 
Figure 6.4: Suspension Displacement Response to 1g Braking – 

10 Controllable Inputs 

 

6.1.2  Weighted Input Penalization Matrix 

This section utilizes the input weighting matrix 

discussed in Section 5.3.3 which heavily penalizes 

the use of the six exogenous inputs for controlling the 

system.  Figure 6.5 shows that with the updated 

penalization matrix the controllers performance at 

reducing the pitch angle of the vehicle has been 

slightly reduced compared to the previous scenario.   

 
Figure 6.5: Pitch Angle Response to 1g Braking – 10 

Controllable Inputs 

The maximum roll angle of 0.04 degrees is however 

well within the design goals discussed in Section 

5.3.1. 

Figure 6.6 shows that the controller has began to 

utilize the four force actuators to limit vehicle pitch 

angle.  Unfortunately, Figure 6.7 shows that the 

controller has still relied heavily on manipulating the 

ground velocity inputs in limiting vehicle pitch. 

 
Figure 6.6: Force Actuator Input Response to 1g Braking – 10 

Controllable Inputs 

 

 
Figure 6.7: Suspension Displacement Response to 1g Braking – 

10 Controllable Inputs 

 

6.2  Scenario 2: 4 Controllable Inputs 

This section discusses the ramifications of removing 

the link between the controller, and the 6 exogenous 

inputs.  To accomplish this, the bond highlighted in 

red in the Simulink model (shown in Appendix F) has 

been removed.  When this model is executed, Matlab 

returns a warning, but successfully simulates the 
model. 

6.2.1  Identity Input Penalization Matrix 

With an identity input weighting matrix, the LQR 

controller relies heavily on the 6 exogenous inputs 

when designing the gain matrix used to control the 



system.  Removing the feedback connection of these 

6 inputs has greatly reduced the effectiveness of the 

controller, as seen below in Figure 6.8.  

 
Figure 6.8: Pitch Angle Response to 1g Braking – 4 

Controllable Inputs 

 

Figure 6.9 demonstrates that the controller utilized 

the force actuators to attempt to limit the pitch of the 

vehicle.  Unfortunately, the gain matrix was designed 

to utilize the force actuators in conjunction with the 6 

exogenous inputs and did not produce forces large 
enough to substantially limit pitch angle. 

 
Figure 6.9: Force Actuator Input Response to 1g Braking – 4 

Controllable Inputs 

 

It is important to note that by removing the 

connection between the gain matrix and the 6 

exogenous inputs, the LQR control theory has been 
violated.  The closed loop system is no longer 

guaranteed to be stable.  Fortunately the system 

remained stable when variations of input and state 

weighting matrix values were simulated.   

Fear of potential instabilities led to intentional 

attempts to make the system unstable, or ―break the 

controller.‖  Many different scenarios were attempted 

to test the robustness of the controller.  Initially, the 
gains in the state and input weighting matrix were 

modified, being made extremely large or small 

relative to one another.  These changes did not cause 

the system to lose stability.  Additionally, nonzero 

values were added to the off diagonal terms on both 

weighting matricides.  These changes did not result in 

instabilities either.  Overall, the controller appeared 

to be very robust considering the fact that the theory 

employed was not entirely complete. 
 

6.2.2  Weighted Input Penalization Matrix 

The input weighting matrix was again returned to the 

values displayed in Section5.3.3.  These values 

penalized the use of the exogenous inputs, favoring 

the use of the four controllable force actuators.  As 
compared to the results discussed in Section 6.1.2,  

only the four controllable actuator inputs were fed 

back to control the system.   

 
Figure 6.10: Pitch Angle Response to 1g Braking – 4 

Controllable Inputs 

 
Figure 6.10 shows that this control architecture was 

able to greatly reduce the pitch angle observed due a 

1g braking step input.  This reduction in pitch angle 

was achieved solely utilizing the four force actuator 

inputs, shown in Figure 6.11.  This control 

configuration was selected for optimization in the 

next section due to its ability to adequately control 

the dynamics of the vehicle‘s chassis utilizing only 

the four controllable force actuators. 

 

 
Figure 6.11: Force Actuator Input Response to 1g Braking – 4 

Controllable Inputs 



6.3  Controller Optimization 

6.3.1  Pitch Optimization 

Scenario 2 (Section 6.2) proved to be more realistic 
then Scenario 1 (Section 6.1), and was selected for 

controller optimization.  Figure 6.12 shows the effect 

of the pitch weighting coefficient discussed in 

Section 5.3.3.  The uncontrolled system exhibited a 

maximum pitch angle of 8degrees and a steady state 

pitch angle of almost 5 degrees.  Increasing the 

penalization of pitch angle in the state weight matrix 

greatly reduced the resulting maximum and steady 

state pitch angles. 

 
Figure 6.12: Pitch Angle Optimization – 1g Braking Step Input 

 

Figure 6.13 shows the actuator forces at one corner of 

the vehicle, produced by increasing pitch angle 

penalization.  It is clear that increased penalization of 
pitch angle increased the force, and thus power 

demanded from the actuator system.  As control 

system designers it was our responsibility to select 

―P‖ to satisfy our design objectives, while 

minimizing the required actuator forces.  The pitch 

penalization coefficient of 100,000 was selected as it 

bounded the pitch angle to less than the design 

specification of 1degree during the maximum 

anticipated braking of 1g while utilizing the least 

actuator force. 

 
Figure 6.13: Actuator Force Required for Differing Pitch 

Penalization Coefficients 

 

6.3.2  Roll Optimization 

Similarly to the previous section, the controller‘s 
sensitivity to the pitch penalizing coefficient 

discussed in Section 5.3.3 was studied.  Figure 6.14 

compares the roll angle the vehicle assumed as a 

result of a step input roll force equivalent to 

cornering at 0.5g.  With no control system, the 

vehicle exhibited a maximum roll angle of 12 

degrees, and a steady state roll angle of more than 7 

degrees.  Implementing an LQR derived control 

system with a roll penalization coefficient of 1000 

moderately improved the performance of the vehicle.  

Increasing the value of the roll penalization 

coefficient significantly reduced the maximum and 
steady state roll angles of the vehicle to less than 1 

degree.   

 
Figure 6.14: Roll Angle Optimization – 0.5g Cornering Roll 

Step Input 

 

Increasing the penalization of the roll angle reduced 

the vehicle roll.  This however occurred at the cost of 

increased force required by the four suspension force 

actuators.  This is shown in Figure 6.15.  To limit 

vehicle roll to less than the design specification of 

1degree the maximum roll penalization value of 

1,000,000 was required.  This value was used for the 

optimized control system discussed in the next 
section. 

 
Figure 6.15: Actuator Force Required for Differing Roll 

Penalization Coefficients 



7.  Optimum Controller 

The optimum controller was selected with input and 

state weighting matrices shown in Section 5.3.3.  The 

vehicle was simulated cornering at 0.5g, which 

produced a rolling force of 8168N and a pitching 
force of 2342N as discussed in Section 4.4.  Figures 

7.1 and 7.2 show that the controller has limited 

vehicle pitch and roll to well within the design 

specifications discussed in Section 5.3.1.  

 
Figure 7.1: Optimum Vehicle Pitch Force and Angle Response 

 

 
Figure 7.2: Optimum Vehicle Roll Force and Angle Response 

 

The required actuator forces from each corner of the 

vehicle are shown below in Figure 7.3.  As expected, 

the right front and left rear actuators are required to 

supply a larger amount of force due to the diagonal 

weight transfer phenomenon discussed in Section 4.4.   

 
Figure 7.3: Optimum Actuator Force Responses 

 

Unfortunately, the limitation of the non-linear tire 

model discussed in Section 3.2 may have been 

exceeded.  Figure 7.3 displays the left rear force 

actuator exerting a tension force of 2000N.  This 

tension force can be no larger than the corner weight 

of the vehicle, or else the physical tire may lift off of 
the ground.  Based on the parameters discussed in 

4.1, 41% of the 1513kg vehicle mass is statically 

situated over the rear axle.  This is equivalent to a 

static mass of 310.6kg equating to 3047N of force 

applied statically to the left rear corner of the vehicle 

due to gravity.  This means that the left rear force 

actuator may request no more than 3047N of tensile 

force from the static vehicle, or else the tire will lift 

off the ground. 

Unfortunately, the dynamic vehicle assumes a 

different weight distribution then the static vehicle.  

Further investigation is necessary to ensure that the 

linear tire model is not operated in its unrealistic 

region detailed in Figure 4.1.  This analysis is 

complicated by the removal of the tire model, and tire 

deflection states when the model was simplified.  

If it was determined that the tires were at risk of 

being operating outside of their linearly acceptable 

region, a more complicated control system may be 

required.  This system would need to sense the 

approach of tire lifting, and change its control 

algorithms to avoid such a phenomenon.  Such a 

control system was deemed outside the scope of this 

project. 

 

8. Conclusions 

 

A linear vehicle dynamics model has been 

constructed which focuses on the vertical motion of a 

vehicle due to road irregularities.  This model avoids 

the use of complicated lateral/longitudinal vehicle 
dynamics, and instead approximated their application 

to the CG of the vehicle.    

The model has been validated in quarter car, and full 

car simulations.  The model successfully 

approximated bump, brake, and cornering situations.   

Future work will be to improve passenger ride 

comfort by implementing an active suspension 

control system.  This improvement will be 

accomplished through the utilization of force 

actuators tied into each corner of the vehicle‘s 

suspension system.   
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Appendix A.1 :   Full Bond Graph 

 

 

 

 

 



Appendix A.2 :   Simplified Bond Graph 

 

 

 

 

 

 

 



 

Appendix B:  State Equations  

 

Tire Springs 

𝑥 𝑇𝑅𝑅 =  𝑉𝑅𝑅(𝑡) −  
𝑝𝑢𝑠𝑅𝑅

𝑚𝑢𝑠

 

𝑥 𝑇𝑅𝐿 =  𝑉𝑅𝐿(𝑡) −  
𝑝𝑢𝑠𝑅𝐿

𝑚𝑢𝑠

 

𝑥 𝑇𝐹𝑅 =  𝑉𝐹𝐿(𝑡) −  
𝑝𝑢𝑠𝐹𝑅

𝑚𝑢𝑠

 

𝑥 𝑇𝐹𝐿 =  𝑉𝐹𝑅(𝑡) −  
𝑝𝑢𝑠𝐹𝐿

𝑚𝑢𝑠

 

 

Anti-roll bars 

𝑥 𝑅𝐵𝑅 =  𝑤  
𝐿𝑅

𝐽𝑟
  

𝑥 𝑅𝐵𝐹 =  𝑤  
𝐿𝑅

𝐽𝑟
  

 

Unsprung mass momentum 

𝑝 𝑢𝑠𝑅𝑅 =  
𝑥𝑇𝑅𝑅

𝑘𝑡

−  −𝐹𝑅𝑅 −  
𝑥𝑆𝑅𝑅

𝑘𝑠

+  𝑏𝑠𝑅  
𝑝𝑢𝑠𝑅𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏 
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
     

𝑝 𝑢𝑠𝑅𝐿 =  
𝑥𝑇𝑅𝐿

𝑘𝑡

−  −𝐹𝑅𝐿 −  
𝑥𝑆𝑅𝐿

𝑘𝑠

+  𝑏𝑠𝑅  
𝑝𝑢𝑠𝑅𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
     

𝑝 𝑢𝑠𝐹𝑅 =  
𝑥𝑇𝐹𝑅

𝑘𝑡

−  −𝐹𝐹𝑅 −  
𝑥𝑆𝐹𝑅

𝑘𝑠

+  𝑏𝑠𝐹  
𝑝𝑢𝑠𝐹𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
     

𝑝 𝑢𝑠𝐹𝐿 =  
𝑥𝑇𝐹𝐿

𝑘𝑡

−  −𝐹𝐹𝐿 −  
𝑥𝑆𝐹𝐿

𝑘𝑠

+ 𝑏𝑠𝐹  
𝑝𝑢𝑠𝐹𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
     

 

 

 

 



Rate of suspension spring deflections 

𝑥 𝑆𝑅𝑅 =  
𝑝𝑢𝑠𝑅𝑅

𝑚𝑢𝑠

−   
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑏  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

𝑥 𝑆𝑅𝐿 =  
𝑝𝑢𝑠𝑅𝐿

𝑚𝑢𝑠

−   
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑎 
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

𝑥 𝑆𝐹𝑅 =  
𝑝𝑢𝑠𝐹𝑅

𝑚𝑢𝑠

−   
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑏  
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

𝑥 𝑆𝐹𝐿 =  
𝑝𝑢𝑠𝐹𝐿

𝑚𝑢𝑠

−   
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑎 
𝐿𝑃

𝐽𝑝
 + 

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

 

Vertical Momentum of Cg 

𝑝 𝑉𝐶𝐺 =  − 𝐹𝐹𝑅 −  
𝑥𝑆𝐹𝑅

𝑘𝑠

+  𝑏𝑠𝐹  
𝑝𝑢𝑠𝐹𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 + 

𝑤

2
 
𝐿𝑅

𝐽𝑟
  −  𝐹𝑅𝑅 +  

𝑥𝑆𝑅𝑅

𝑘𝑠

+  𝑏𝑠𝐹  
𝑝𝑢𝑠𝑅𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏 
𝐿𝑃

𝐽𝑝
 + 

𝑤

2
 
𝐿𝑅

𝐽𝑟
   −  𝐹𝑅𝐿 +  

𝑥𝑆𝑅𝐿

𝑘𝑠

+  𝑏𝑠𝑅  
𝑝𝑢𝑠𝑅𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
  −  𝐹𝐹𝐿 +  

𝑥𝑆𝐹𝐿

𝑘𝑠

+  𝑏𝑠𝑅  
𝑝𝑢𝑠𝐹𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

 

𝐿 𝑝 = ℎ 𝐹𝑝𝑖𝑡𝑐 ℎ +  𝑎  −
𝑥𝑅𝐵𝐹

𝐾𝑅𝐹

+  𝐹𝐹𝑅 −  
𝑥𝑆𝐹𝑅

𝑘𝑠

−  𝑏𝑠𝐹  
𝑝𝑢𝑠𝐹𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

+  𝑎  
𝑥𝑅𝐵𝐹

𝐾𝑅𝐹

+  𝐹𝐹𝐿 −  
𝑥𝑆𝐹𝐿

𝑘𝑠

−  𝑏𝑠𝑅  
𝑝𝑢𝑠𝐹𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

+  𝑏  
𝑥𝑅𝐵𝑅

𝐾𝑅𝑅

− 𝐹𝑅𝑅 +
𝑥𝑆𝑅𝑅

𝑘𝑠

+  𝑏𝑠𝐹  
𝑝𝑢𝑠𝑅𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏 
𝐿𝑃

𝐽𝑝
 + 

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

+  𝑏  −
𝑥𝑅𝐵𝑅

𝐾𝑅𝑅

−  𝐹𝑅𝐿 −  
𝑥𝑆𝑅𝐿

𝑘𝑠

+  𝑏𝑠𝑅  
𝑝𝑢𝑠𝑅𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

 



𝐿 𝑅 = ℎ 𝐹𝑟𝑜𝑙𝑙  −  
𝑤

2
 
𝑥𝑅𝐵𝑅

𝐾𝑅𝐹

−  𝐹𝐹𝑅 +  
𝑥𝑆𝐹𝑅

𝑘𝑠

+  𝑏𝑠𝐹  
𝑝57

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
   

−  
𝑤

2
 
𝑥𝑅𝐵𝑅

𝐾𝑅𝐹

+ 𝐹𝐹𝐿 −  
𝑥𝑆𝐹𝐿

𝑘𝑠

−  𝑏𝑠𝐹  
𝑝32

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

+ 𝑎  
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
   

−
𝑤

2
 
𝑥𝑅𝐵𝐹

𝐾𝑅𝑅

−  𝐹𝑅𝑅 +
𝑥𝑆𝑅𝑅

𝑘𝑠

+  𝑏𝑠𝑅  
𝑝𝑢𝑠𝑅𝑅

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏 
𝐿𝑃

𝐽𝑝
 +  

𝑤

2
 
𝐿𝑅

𝐽𝑟
   

−  
𝑤

2
 −

𝑥𝑅𝐵𝐹

𝐾𝑅𝑅

−  𝐹𝑅𝐿 −  
𝑥𝑆𝑅𝐿

𝑘𝑠

+ 𝑏𝑠𝑅  
𝑝𝑢𝑠𝑅𝐿

𝑚𝑢𝑠

−  
𝑝𝑉𝐶𝐺

𝑚𝑠

− 𝑏 
𝐿𝑃

𝐽𝑝
 −  

𝑤

2
 
𝐿𝑅

𝐽𝑟
    

  



Appendix C.1 :  Original State Space Representation  

States X, Inputs U and A, B, C, D matrices  

X = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥𝑇𝑅𝐿

𝑥𝑇𝐹𝑅

𝑥𝑆𝑅𝐿

𝑥𝑇𝐹𝐿

𝑥𝑇𝑅𝑅

𝑥𝑆𝐹𝑅

𝑥𝑅𝐵𝑅

𝑥𝑆𝐹𝐿

𝑝𝑢𝑠𝑅𝐿

𝑥𝑆𝑅𝑅

𝑝𝑢𝑠𝐹𝑅

𝑥𝑅𝐵𝑅

𝑝𝑢𝑠𝐹𝐿

𝑝𝑢𝑠𝑅𝑅

𝐿𝑅

𝐿𝑃

𝑝𝑉𝐶𝐺  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 U = 

 
 
 
 
 
 
 
 
 
 

𝑉𝑅𝑅

𝐹𝑅𝑅

𝐹𝐿𝑅

𝑉𝑅𝐿

𝑉𝐹𝐿

𝐹𝐹𝐿

𝐹𝑟𝑜𝑙𝑙

𝐹𝐹𝑅

𝑉𝐹𝑅

𝐹𝑝𝑖𝑡𝑐 ℎ  
 
 
 
 
 
 
 
 
 

         B = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  D(7x17) = 0 

A = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0 0 0

−1

𝑚𝒖𝒔
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
−1

𝑚𝒖𝒔
0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

𝑚𝒖𝒔
0 0 0 0 0 −𝑤

(2 ∗ 𝐽𝒓) 
−𝑏

𝐽𝒓

−1

𝑚𝒔

0 0 0 0 0 0 0 0 0 0 0 0
−1

𝑚𝒖𝒔
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−1

𝑚𝒖𝒔
0 0 0

0 0 0 0 0 0 0 0 0 0
1

𝑚𝒖𝒔
0 0 0 −𝑤

(2 ∗ 𝐽𝒓) 
𝑎

𝐽𝒑

1

𝑚𝒔

0 0 0 0 0 0 0 0 0 0 0 0 0 0
(
𝑤

2
)

(𝐽𝒓 + 𝐽𝒓 )
 0 0

0 0 0 0 0 0 0 0 0 0 0 0
1

𝑚𝒖𝒔
−𝑤

(2 ∗ 𝐽𝒓) 
𝑎

𝐽𝒑
0 0

……… .
𝐸𝑡𝑐.

………  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Please refer to the MATLAB code in Appendix E for the complete A matrix programmed in.  

C = 

 
 
 
 
 
 
 
 
 
0 0 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝟏 0 0 0 0 0 0 0 0 0
0 0 0 0 0 𝟏 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 𝟏 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝑚𝑠

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝐽𝑝

 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝐽𝑟

 0 0  
 
 
 
 
 
 
 
 

   

 

 



Appendix C.2 :   Modified State Space Representation  

States X, Inputs U and A, B, C, D matrices  

X = 

 
 
 
 
 
 
 
 
 
𝑥𝑆𝑅𝐿

𝑥𝑆𝐹𝑅

𝑥𝑆𝐹𝐿

𝑥𝑆𝑅𝑅

𝑝𝑉𝐶𝐺

𝐿𝑅

𝐿𝑃

𝜃𝑟

𝜃𝑝  
 
 
 
 
 
 
 
 

 U = 

 
 
 
 
 
 
 
 
 
 

𝑉𝑅𝑅

𝐹𝑅𝑅

𝐹𝐿𝑅

𝑉𝑅𝐿

𝑉𝐹𝐿

𝐹𝐹𝐿

𝐹𝑟𝑜𝑙𝑙

𝐹𝐹𝑅

𝑉𝐹𝑅

𝐹𝑝𝑖𝑡𝑐 ℎ  
 
 
 
 
 
 
 
 
 

         B = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  D(7x17) = 0 

A = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1

𝑚𝒖𝒔
0 0 0 0 0 0 0 0 0 0

0 0
−1

𝑚𝒖𝒔
0 0 0 0 0 0 0 0

1

𝑚𝒖𝒔
0 0 0 0 0 −𝑤

(2 ∗ 𝐽𝒓) 
−𝑏

𝐽𝒓

−1

𝑚𝒔
0 0

0 0 0 0
−1

𝑚𝒖𝒔
0 0 0 0 0 0

0 0
1

𝑚𝒖𝒔
0 0 0 −𝑤

(2 ∗ 𝐽𝒓) 
𝑎

𝐽𝒑

1

𝑚𝒔
0 0

0 0 0 0 0 0
(
𝑤

2
)

(𝐽𝒓 + 𝐽𝒓 )
 0 0 0 0

0 0 0 0
1

𝑚𝒖𝒔
−𝑤

(2 ∗ 𝐽𝒓) 
𝑎

𝐽𝒓
0 0 0 0

0 0 0 0 0 0 0
1

𝐽𝒓
0 0 0

0 0 0 0 0 0 0 0
1

𝐽𝒑
0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Please refer to the MATLAB code in Appendix E for the complete A matrix programmed in.  

C = 

 
 
 
 
 
 
 
 
 
𝟏 0 0 0 0 0 0 0 0
0 0 0 𝟏 0 0 0 0 0
0 0 𝟏 0 0 0 0 0 0
0 0 0 0 𝟏 0 0 0 0

0 0 0 0 0 0 0 0 1
𝑚𝑠

 

0 0 0 0 0 0 0 1
𝐽𝑝

 0

0 0 0 0 0 0 1
𝐽𝑟

 0 0  
 
 
 
 
 
 
 
 

   

 

 

 



 

Appendix D :  Complete Simulink Model of the System (without the Controller) 

 

 

 

 

 

 

 

 

 

 

 



Appendix E :  Complete Simulink Model with LQR Controller 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix F :  Modified Simulink Model with LQR 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix G :  MATLAB code 

%% 
clear all; clc 

  
%----State Vector---------------------------------------------------------- 
%... Number of States  7   
% 1) Q65=Qlf; 
% 2) Q38=Qlr; 
% 3) Q57=Qrf; 
% 4) Q28=Qrr; 
% 5) P45=Pi; 
% 6) P48=Pp; 
% 7) P49=Pr; 
% 8) Pitch Angle; 
% 9) Roll Angle; 
%----Geometric Parameters-------------------------------------------------- 
 w=1.54; %m 
 h=0.55; %m 
 b=1.68; %m 
 a=1.17; %m 

  
% ----Parameter Values----------------------------------------------------- 
 Csrr=1/14900; %1/(N/m) 
 Cslr=1/14900; %1/(N/m) 
 Cslf=1/14900; %1/(N/m) 
 Csrf=1/14900; %1/(N/m) 

  
 I =1513; %kg 
 Ir=637.26; %kg-m^2 
 Ip=2443.26; %kg-m^2 

  

  
 Rdrr=475; %N-s/m 
 Rdlf=475; %N-s/m 
 Rdrf=475; %N-s/m 
 Rdlr=475; %N-s/m 

  
 %----Mapping Our Variable Names to Campg Assignments---------------------- 
T1x2 = 2/w ;   
T3x4 = 1/b ;   
T5x6 = 1/b ;   
T7x8 = w/2 ;   
T9x10 = a ;   
T11x12 = a ;   
T13x14 = 1/h ;   
T15x16 = 1/h ;   
T17x18 = 2/w ;   
T19x20 = w/2 ;    
R27 = Rdrr ;   
C28 = Csrr ;  
R37 = Rdlr ;   
C38 = Cslr ;   
I45 = I ;   
I48 = Ip ;  



I49 = Ir ;    
R56 = Rdrf ;  
C57 = Csrf ;   
R64 = Rdlf ;  
C65 = Cslf ;   

  
  %----Mapping Our in/out to Campg Assignments------------------------------ 
 % 1) SE13 = Fpitch ;   
 % 2) SE15 = Froll ;   
 % 3) SF21 = Vlr ;   
 % 4) SF22 = Vlf ;   
 % 5) SF23 = Vrr ;   
 % 6) SF24 = Vrf ;   
 % 7) SE29 = Frr ;   
 % 8) SE39 = Flr ;   
 % 9) SE58 = Frf ;   
 % 10)SE66 = Flf ;   

   

   
 %----Building the A and B matricies--------------------------------------- 
%... Number of States   7 
   A(1,:) = [0,0,0,0,-1/I45,+1/I48*T9x10,-1/I49/T17x18 0 0]; 
   B(1,:) = [0,0,0,1,0,0,0,0,0,0]; 

  
   A(2,:) = [0,0,0,0,-1/I45,-1/I48/T3x4,-1/I49/T1x2 0 0]; 
   B(2,:) = [0,0,1,0,0,0,0,0,0,0]; 

  
   A(3,:) = [0,0,0,0,-1/I45,+1/I48*T11x12,+1/I49*T19x20 0 0]; 
   B(3,:) = [0,0,0,0,0,1,0,0,0,0]; 

  
   A(4,:) = [0,0,0,0,-1/I45,-1/I48/T5x6,+1/I49*T7x8 0 0]; 
   B(4,:) = [0,0,0,0,1,0,0,0,0,0]; 

  
   A(5,:) = [+1/C65,+1/C38,+1/C57,+1/C28,-1/I45*R64-1/I45*R27-1/I45*R37- ... 
             1/I45*R56,+1/I48*T9x10*R64-1/I48/T5x6*R27-1/I48/T3x4*R37+ ... 

1/I48*T11x12*R56,-1/I49/T17x18*R64+1/I49*T7x8*R27-1/I49/T1x2*R37+ 

...1/I49*T19x20*R56 0 0]; 

 
   B(5,:) = [0,0,+1*R37,1*R64,+1*R27,+1*R56,-1,-1,-1,-1]; 

  
   A(6,:) = [-1/C65*T9x10,+1/C38/T3x4,-1/C57*T11x12,+1/C28/T5x6,- ... 

1/I45*R37/T3x4-1/I45*R27/T5x6+1/I45*R64*T9x10+1/I45*R56*T11x12,- 

... 1/I48/T3x4*R37/T3x4-1/I48/T5x6*R27/T5x6- 

1/I48*T9x10*R64*T9x10- ... 1/I48*T11x12*R56*T11x12,- 

1/I49/T1x2*R37/T3x4+1/I49*T7x8*R27/T5x6+ ... 
             1/I49/T17x18*R64*T9x10-1/I49*T19x20*R56*T11x12 0 0]; 

 
B(6,:) = [+1/T13x14,0,1*R37/T3x4,-1*R64*T9x10,+1*R27/T5x6,-1*R56*T11x12,-  

            1/T5x6,-1/T3x4,+1*T11x12,+1*T9x10]; 

  
   A(7,:) = [+1/C65/T17x18,+1/C38/T1x2,-1/C57*T19x20,-1/C28*T7x8,- ... 

1/I45*R37/T1x2+1/I45*R27*T7x8- 

1/I45*R64/T17x18+1/I45*R56*T19x20,- ... 



1/I48/T3x4*R37/T1x2+1/I48/T5x6*R27*T7x8+1/I48*T9x10*R64/T17x18- 

... 1/I48*T11x12*R56*T19x20,-1/I49/T1x2*R37/T1x2-

1/I49*T7x8*R27*T7x8- ...  
             1/I49/T17x18*R64/T17x18-1/I49*T19x20*R56*T19x20 0 0]; 
    

B(7,:) = [0,+1/T15x16,1*R37/T1x2,+1*R64/T17x18,-1*R27*T7x8,-1*R56*T19x20,+  
            1*T7x8,-1/T1x2,+1*T19x20,-1/T17x18]; 

         
   %Expand state space to hold pitch angle 
   A(8,:) = [0 0 0 0 0 1 0 0 0]; 
   B(8,:) = [0 0 0 0 0 0 0 0 0 0]; 

    
   A(9,:) = [0 0 0 0 0 0 1 0 0]; 
   B(9,:) = [0 0 0 0 0 0 0 0 0 0]; 

         
%========================================================================== 
% %Output Matrix Definition 

  
C=eye(9); 
D=zeros(9,10); 

  
%========================================================================== 
%LQR Controller Gain Design 

  
% %state weighting 
Q=eye(length(A)); 

  
%Pitch Penalty 
Q(8,8)=100000; 

  
%Roll Penalty 
Q(9,9)=1000000; 

  

  
%input weighting 
R=eye(length(B)); 
R(1,1)=100000; R(2,2)=100000; R(3,3)=100000; R(4,4)=100000; R(5,5) = 100000; 

R(6,6)=100000; 

  
[K,S,e] = lqr(A,B,Q,R); 
 


