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Algorithms for Enhanced Inter Cell Interference
Coordination (eICIC) in LTE HetNets

Supratim Deb, Pantelis Monogioudis, Jerzy Miernik, James P. Seymour

Abstract—The success of LTE Heterogeneous Networks (Het-
Nets) with macro cells and pico cells critically depends on
efficient spectrum sharing between high-power macros and low-
power picos. Two important challenges in this context are, (i)
determining the amount of radio resources that macro cells
should offer to pico cells, and (ii) determining the association
rules that decide which UEs should associate with picos. In
this paper, we develop a novel algorithm to solve these two
coupled problems in a joint manner. Our algorithm has provable
guarantee, and furthermore, it accounts for network topology,
traffic load, and macro-pico interference map. Our solution is
standard compliant and can be implemented using the notion of
Almost Blank Subframes (ABS) and Cell Selection Bias (CSB)
proposed by LTE standards. We also show extensive evaluations
using RF plan from a real network and discuss SON based eICIC
implementation.

Index Terms—4G LTE, Heterogeneous Cellular Systems,
eICIC, Self-Optimized Networking (SON)

I. INTRODUCTION

Wireless data traffic has seen prolific growth in recent years
due to new generation of wireless gadgets (e.g., smartphones,
tablets, machine-to-machine communications) and also due to
fundamental shift in traffic pattern from being data-centric
to video-centric. Addressing this rapid growth in wireless
data calls for making available radio spectrum as spectrally-
efficient as possible. A key centerpiece is making the radio
spectrum efficient is LTE heterogeneous networks (LTE Het-
Net) or small cell networks [20]. In a HetNet architecture, in
addition to usual macro cells, wireless access is also provided
through low-powered and low-cost radio access nodes that
have coverage radius around 10 m-300 m[6]. Small cells in
LTE networks is a general term used to refer to Femto cells
and Pico cells. Femto cells are typically for indoor use with a
coverage radius of few tens of meters and its use is restricted to
a handful of users in closed subscriber group. Pico cells have
a coverage of couple of hundreds of meters and pico cells
are open subscriber group cells with access permission to all
subscribers of the operator. Picos are typically deployed near
malls, offices, business localities with dense mobile usage etc.
Picos are mostly deployed outdoor but there could be indoor
deployments in large establishments etc. However, in LTE,
since pico cells typically share the frequency band as macro
cells, the performance of a low-power pico access node could
be severely impaired by interference from a high power macro
access node. Addressing this interference management riddle
is key to realize the true potential of a LTE HetNet deployment
and is the goal of this work. This work focuses on resource
sharing between macro cells and pico cells. Note that macros
and picos are both deployed in a planned manner by cellular
operators.

A typical HetNet with pico and macro access nodes is
shown in Figure 1. The high-power macro network nodes
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Fig. 1. A typical LTE HetNet architecture with Macro and Pico access
nodes. Pico-1 is used for throughput enhancement in a possible traffic hotspot
location, Pico-2 and Pico-3 are used for improving edge throughput.

are deployed for blanket coverage of urban, suburban, or
rural areas; whereas, the pico nodes with small RF coverage
areas aim to complement the macro network nodes for filling
coverage holes or enhancing throughput. There are two factors
that could handicap the net capacity of a pico access node in
the downlink. Firstly, the downlink pico transmissions to its
associated UEs could be severely interfered by high power
macro transmissions [10]. For e.g., in Figure 1, downlink
transmissions to UEs associated with Pico-1 could easily be
interfered by downlink transmissions of Macro-1. Secondly,
UEs, who are close to pico and could benefit from associating
with a pico access node, could actually end up associating with
the macro access node due to higher received signal strength
from the high power macro access node 1. For e.g., UEs not
too close to Pico-3 but still within the coverage area of Pico-
3 could end up associating with Macro-2 because of higher
received signal strength from Macro-2. Indeed, this could
leave the pico underutilized and thus defeating the purpose of
deploying that pico. Note that, it is the downlink interference at
the pico UEs that needs additional protection from the macros;
the uplink interference at the picos can be mitigated using the
same power control principle in a macro only LTE network [5].
Thus, for a pico cell based HetNet deployment to realize the
promised theoretical gains, there are two important questions
that need to be answered:

1) How should downlink radio resources be shared so that
pico UEs are guaranteed a fair share of throughput?
Clearly, one needs to ensure that the pico transmissions
are not badly hit by interference from macros.

2) How to decide which UEs get associated with picos?
Clearly, association based on highest signal strength is
inadequate to address this challenge.

This paper provides answers to these two coupled questions.
Realizing the need to protect downlink pico transmissions by
mitigating interference from neighboring macro cells, 3GPP
has proposed the notion of enhanced inter cell interference
coordination (eICIC) that provide means for macro and pico
access nodes to time-share the radio resources for downlink

1In LTE networks, UEs associate typically with the cell with highest
Received Signal Reference Power (RSRP). RSRP is a measure of the received
signal strength of a cell at a UE and it is measured based on the strength of
certain reference signals that cells broadcast.
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transmissions. In simple terms eICIC standards propose two
techniques. Firstly, each macro remains silent for certain
periods, termed Almost Blank Subframes (ABS periods), over
which pico can transmit at reduced interference. Secondly,
the received signal strength based UE association in LTE is
allowed to be biased towards the pico by a suitable margin. The
details of how to set these ABS periods and how much to bias
the association in favor of picos are left unspecified. In this
paper, we answer these questions. We design our algorithms
to meet the following goals: network-wide high performance,
adaptability to network settings like propagation map and
network topology etc., and scalability.
A. Our Contributions

In this work, we make the following contributions:
1) Framework for network dependent eICIC: To the best of

our knowledge, ours is the first work to provide a for-
mal framework for optimizing Almost Blank Subframes
(ABS) and UE-association in every cell by accounting
for cell specific UE (load) locations, propagation map
of each cell, macr-pico interference maps, and network
topology. We also establish that computing the optimal
solution with respect to maximizing a network utility is
computationally hard.

2) Efficient eICIC Algorithms: We next provide an efficient
algorithm to compute ABS and UE-associations (and
corresponding CSB) in an LTE HetNet. Our algorithm
is provably within a constant factor of the optimal and
scales linearly with the number of cells. Furthermore,
our algorithm is amenable to distributed implementation.

3) Evaluation using Real RF Plan: We perform extensive
evaluation of our algorithm on a Radio-Frequency map
from a real LTE deployment in New York City and
demonstrate the gains. The results show that, our al-
gorithm performs within 90% of the optimal for real-
istic deployment scenarios, and, 5th percentile of UE
throughput in the pico coverage area can improve up
to more than 50% compared to no eICIC; the improve-
ments can be 2× for lower throughput percentiles.

4) Practical Feasibility with SON: Finally, we discuss
the challenges of implementing eICIC within Self-
Optimizing (SON) framework and describe a prototype
along with the associated challenges.

The rest of the paper is organized as follows. Section II
provides a background on eICIC and describes some impor-
tant related work. In Section III, we describe our network
model. Section X states the problem and formally derives
the computational limits of the problem. Our main algorithm
for jointly optimizing ABS parameters for each cell and
macro/pico association for each UE is provided in Section V-
VII. Section VIII describes how a given choice of UE associ-
ation can be translated into cell selection bias parameters and
also how ABS numbers can be converted into ABS patterns.
Section IX presents evaluations using RF plan from a real LTE
deployment. Finally, Section X discusses SON based eICIC
implementation along with a prototype.

II. BACKGROUND: EICIC AND RELATED WORK

A. Enhanced Inter Cell Interference Coordination (eICIC)
The eICIC proposal in LTE standards serves two important

purposes: allow for time-sharing of spectrum resources (for
downlink transmissions) between macros and picos so as
to mitigate interference to pico in the downlink, and, allow
for flexibility in UE association so that picos are neither

Fig. 2. An illustration of how an LTE frame can consist of ABS subframes.
A pico can transmit over ABS subframes with very little interference from
macro, and it can also transmit over any other non-ABS subframe when it
receives high interference from macro.

underutilized nor overloaded. In eICIC, a macro eNodeB can
inject silence periods in its transmission schedule from time
to time, so that interfering pico eNodeBs can use those silence
periods for downlink transmissions. Furthermore, to ensure
that sufficient number of UEs get associated with a pico,
the eICIC mechanism allow UEs to bias its association to
a pico. Before we discuss these mechanisms in more details,
we provide a very brief introduction to format of downlink
transmissions in LTE.

Downlink transmission format: In LTE, transmissions are
scheduled once every subframe of duration 1 ms; 10 such
subframes consist of a frame of length 10 ms. Each subframe
is further divided into 2 slots of duration 0.5 ms each. Each
slot consists of 7 OFDMA symbols. While we do not need
any further details for our discussion, the interested reader
can refer to [16] for extensive details of LTE downlink
transmission format. We now describe two important features
of eICIC.

Almost Blank Subframes (ABS): In order to assist pico
downlink transmissions, the macro eNodeBs can mute all
downlink transmissions to its UEs in certain subframes termed
almost blank subframes (ABS). These subframes are called
“almost blank” because a macro can still transmit some
broadcast signals over these subframes. Since these broadcast
signals only occupy a small fraction of the OFDMA sub-
carriers, the overall interference a macro causes to a pico
is much less during these ABS periods. Thus, the pico can
transmit to its UEs at a much higher data rate during ABS
periods. Note that, a pico is also allowed to transmit to its
UEs during non-ABS periods. This could provide good enough
performance to UEs very close to the pico. An example of
ABS schedule is shown in Figure 2.

Flexible User Association and Cell selection bias (CSB):
Typically in cellular networks, when a UE device (UE) has
to select a suitable cell for association, it chooses the one
with maximum received signal strength. However, if the same
strategy is extended to HetNet deployments with both macro
and pico cells, this could lead to underutilization of the
pico eNodeB’s. This is because, picos transmit at very low
power and thus, unless a UE is very close to the pico, signal
strength from the macro is likely to be larger for the UE.
To overcome this, LTE standards have proposed a concept
called cell selection bias which works in the following manner.
Suppose the cell selection bias of cell-i is αi. Denote by Pi
as the reference-signal received power (in dBm) from cell-i
as measured by a UE. Here a cell could be a pico-cell or a
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macro-cell. Then, the UE associates with cell-k such that

k = argmax
i

(Pi + αi).

Thus, by assigning larger (smaller) bias to picos compared to
macros, once can ensure that the picos are not underutilized
(over-utilized). The bias values are broadcast by the cells to
assist UEs make the right association decision.

B. Connection with Other Interference Mitigation Techniques

It is instructive to discuss the connection of eICIC with two
other interference mitigation techniques found in LTE specifi-
cations, namely, the frequency domain Inter-cell Interference
Coordination (ICIC) and Coordinated Multi-Point (CoMP).

Connection with ICIC: ICIC pre-existed eICIC in terms
of both standards development and initial deployments. In
ICIC based schemes, cell resources are divided into fre-
quency bands and transmit power profiles to reduce inter-
cell interference [15], [17], [8]. The obvious difference is
that ICIC works in the power spectral density (PSD) domain
as opposed to the time domain of eICIC. ICIC has certain
limitations compared to eICIC. In ICIC based schemes, the
different power profiles can either span different sub-bands
(thus leading to a non-uniform frequency re-use factor) or
it can span multiple carriers. The disadvantage of sub-band
ICIC is that standards did not include the capability of varying
the reference signal power according to the sub-band, giving
rise to data demodulation issues for QAM-modulated symbols.
Another challenge in deploying sub-band based ICIC is to
find sufficient number of PSD patterns in a dense deployment
with macros and picos. The carrier based ICIC, on the other
hand, introduces significant number of inter-carrier handovers.
The requirement to define multiple carriers also increases the
cost of small cells. Due to these reasons, eICIC has attracted
much attention of operators and standard bodies especially for
mitigating interference to picos in HetNets. Having said that,
ICIC based macros and eICIC are not either-or propositions
and eICIC benefits can come on the top of existing ICIC
based macro deployments. Our model and framework easily
incorporates existing ICIC based macros; see Remark 2 in
Section IV for details.

Connection with CoMP: Coordinated Multipoint Access
(CoMP) is also another edge-rate improving technology for
downlink and uplink both. In downlink, CoMP can be
considered an extension of multiuser MIMO (MU-MIMO),
that achieves interference mitigation by transmitting simul-
taneously from multiple cells with properly chosen antenna
weights so as to achieve some optimal physical-layer oriented
metric like zero-forcing or joint Minimum Mean Square Error
(MMSE). In spite of theoretical performance benefits, CoMP
faces severe practical challenges due to high backhaul re-
quirements between base stations, extremely tight time-phase-
frequency synchronization across the set of collaborating cells,
and requirement of pico cells to be equipped with antenna
arrays leading to cost increase of supposedly low-cost picos.
Evidently, it will take significant investment and time for
CoMP to be widely deployed in LTE networks that are still in
their early days. eICIC on the other hand is much simpler to
deploy and is likely to be adopted much sooner. To this end,
our work optimizes eICIC which does not account for CoMP.
Nevertheless, jointly optimizing a modified version of eICIC
to account for CoMP is a technically challenging problem and
is left as a future work. See Remark 3 in Section IV for further
details.

C. Related Work
The eICIC proposal is relatively new for LTE Hetero-

geneous networks. In [6], the authors present a very good
introduction to the concept of eICIC in LTE HetNets. In [10],
the authors provide an excellent survey on eICIC and the
motivation behind eICIC proposal in LTE standards. In a
recent work [11], the authors present simulation studies to
understand the dependence between network performance and
eICIC parameters. However, the authors primarily consider
uniform eICIC parameter in all the cells; clearly, the right
choice of eICIC parameters should vary across cells and
account for propagation map, cell-load etc. Also, the authors
do not present a framework to optimize the eICIC parameters.

In the previous subsection, we have talked about another
interference mitigation technique called ICIC that has been an
area of active research in the recent past. In [15], [17], [8], the
impact of ICIC has been studied for LTE and LTE HetNets.
The concept of soft-frequency reuse has been formally studied
in [19], where, the authors optimize downlink transmit power
profiles in different frequency bands. The work closest to
ours in principle is [12] that considers the problem of UE
association and ICIC in a joint manner.

III. SYSTEM MODEL

A. Terminologies
In addition to the notion of subframes described in Sec-

tion II, we will use the following terminologies in this paper.
UE (user equipment): UE refers to the mobile device.
eNodeB (eNB): The eNB2 is the network element that

interfaces with the UE and it performs radio resource manage-
ment, admission control, scheduling, QoS enforcement, cell
information broadcast etc. It hosts critical protocol layers like
PHY, MAC, and Radio Link Control (RLC) etc.

Macro cell: In LTE heterogeneous networks (HetNet), a
macro cell has a base station transmitter with high transmission
power (typically 20 W-40 W), sectorized directional antennas,
high elevation, and thus ensuring a cell coverage radius
typically around 0.5 km-2 km.

Pico cell: As opposed to a macro cell, a pico transmitter
is characterized my much lower transmission power (typically
2 W-5 W), omnidirectional antennas, low antenna height, low
cost, and has a cell coverage radius of around 100-300 m.
Pico cells are underlayed on the macro-cellular network to
fill coverage holes and to enhance capacity in traffic hotspot
locations.

Reference Signal Received Power (RSRP): Every UE in LTE
makes certain measurements of received signal strength of all
nearby cell transmitters. RSRP is the average received power
of all downlink reference signals across the entire bandwidth
as measured by a UE. RSRP is taken as a measure of the
received signal strength of a cell transmitter at a UE.

B. Network Model and Interference graph
Since the eICIC proposal by LTE standard aims to protect

downlink pico transmissions3 and our goal is to develop
solutions for optimal eICIC setting, we only consider downlink
transmissions in this work.

Network Topology: Our system model consists of a network
of macro and pico (also called pico in this paper) eNBs. M

2eNB is equivalent to base station in traditional cellular voice networks but
it has more functionalities.

3The uplink problem (via power control [5]) in presence of picos is not
different from macro only network because UE capabilities from a transmit
power point of view remain same.



4

TABLE I
LIST OF PARAMETERS AND KEY OPTIMIZATION VARIABLES

Notation Description
U , u, N Set of UEs, index for a typical
(u ∈ U) UE, number of UEs, respectively

M, m, M Set of macros, index for a typical
(m ∈ M) macro, number of macros, respectively
P, p, P Set of picos, index for a typical
(p ∈ P) pico, number of picos, respectively
mu The macro that is best for UE-u

rmacrou Data-rate achievable by UE-u from mu
(in bits/sub-frame)

pu The pico that is best for UE-u
rpico,ABSu Data-rate achievable by UE-u from pu when all

interfering macros are muted
(in bits/sub-frame)

rpicou Data-rate achievable by UE-u from pu when
all/some interfering macros are transmitting

(in bits/sub-frame)
Ip Set of macro eNB’s that interfere

with pico p
Um Set of UEs for whom macro-m is the

best macro eNB
Up Set of UEs for whom pico-p is the

best pico eNB
Ap Variable for ABS subframes used/received by pico-p
Nm Variable non-ABS subframes used by macrio-m
xu Variable denoting UE-u’s air-time from macro

yAu , ynAu Variables denoting UE-u’s air-time from pico
over ABS and non-ABS subframes respectively

Ru Variable denote UE-u’s average throughput
z, p Vector of all primal and dual variables, respectively

denotes the set of macros and P denotes the set of picos. We
also use m and p to denote a typical macro and a typical pico
respectively.

Interference Modeling and Macro-pico Interference Graph:
We now describe our interference model. For the purpose of
eICIC algorithms, it is important to distinguish macro-pico
interference from the rest.

• Macro-pico interference: For each pico-p, the set of
macros that interfere with it is denoted by Ip ⊆M. The
macros in the set Ip need to be silent during any ABS
subframes used by pico-p. Thus, UEs of pico-p can be
interfered by m ∈ Ip only during non-ABS subframes.

• Macro-macro and pico-pico interference: Due to 1:1 fre-
quency re-use in most LTE networks, picos can interfere
with each other and similarly for the macros. A pico UE
can be interfered by another pico both during ABS and
non-ABS subframes.

To better understand the distinction between the two kinds
of interferences from an eICIC point of view, consider a
pico associated UE-u’s interfering cells. Suppose the total
interference power it receives from all other interfering picos
and all interfering macros (those in the set Ip) be P picoInt (u)
and PmacroInt (u), respectively. Denoting by PRx(u) the received
downlink power of UE-u, the downlink SINR of UE u ∈ Up
can be modeled as

SINR(u) = (1)
PRx(u)

Ppico
Int (u)+N0

, for ABS sub-frames
PRx(u)

Ppico
Int (u)+Pmacro

Int (u)+N0
, for non-ABS sub-frames

This is because, during ABS sub-frames all interfering macros
of pico-p remain silent and so the only interference is from the
interfering picos of p. However, during non-ABS sub-frames,
there is interference from all interfering picos and macros both.
Instead, if UE-u were a macro-UE, the SINR expression would

be

SINR(u) =
PRx(u)

P picoInt (u) + PmacroInt (u) +N0

, (2)

where P picoInt (u) and PmacroInt (u) denote the interference from
interfering picos and macros respectively.

Thus the interference graph relevant from picos’ point of
view is the bipartite graph formed by joining edges from any
p to macros in the set Ip. The graph neighbors of a pico-p
should all remain silent during ABS periods usable by picos.

Remark 1. The elements of Ip can be obtained either through
cell-adjacency relationship or based on whether the received
signal from macro eNB to p is above a threshold.

User model: To start with, we will consider a scenario
where there is a set of static UE’s denoted by U , and also,
we know for each UE-u (i) the best candidate macro in terms
of RSRP and average PHY data-rate from the macro rmacrou ,
(ii) the best candidate pico, if any, and average PHY data-
rate in ABS and non-ABS subframes given by rpico,ABSu
and rpicou respectively. Note that, the value of rmacrou can
be obtained from the SINR expression (2) using LTE table
lookup for conversion from SINR to rate, and similarly the
values of rpico,ABSu and rpicou from the SINR expression (1).
Alternatively, one can use Shannon capacity formula (with
some offset in SINR) to obtain rmacrou , rpico,ABSu , rpicou from
the corresponding SINR expressions. Clearly, the average PHY
data rate that a UE receives from pico is higher in ABS frames
due to reduced interference from nearby macros. In fact, the
average PHY data rate from a pico in a non-ABS subframe
is likely to be very small in many instances due to very high
interference from macro.

Note that picos could be deployed indoor or outdoor (typi-
cally outdoor) but makes no difference to our framework. Only
the pico to UE propagation (and hence data rates) change ap-
propriately. The main parameters and some of the optimization
variables (introduced later) are captured in Table I.

IV. PROBLEM STATEMENT AND COMPUTATIONAL
HARDNESS

We will first develop an algorithm to find optimal ABS and
CSB configuration with static UEs scenario where we have
the precise knowledge about number of UEs in different cells
along with PHY data rates. We will describe in Section X,
how Monte-Carlo based techniques can be used along with
our algorithm for this scenario where UE densities and SINR
distributions are known instead of exact UE locations.

The essence of eICIC approach is to compute optimal
association (either to macro or to a pico) rules for UEs, and
also compute how macros and picos share radio resources in
time domain. Thus, we will first formulate a problem for the
optimal choice of (i) UE association, i.e., which UEs associate
with the best macro and which ones associate with the best
pico, (ii) the number of ABS subframes reserved for interfered
picos by each macro eNB. We will denote by Nsf as the total
number of subframes over which ABS subframes are reserved
(typically, Nsf = 40). We will also refer to the quantity Nsf
as ABS-period.

Optimization variables: Let Nm be the number of sub-
frames for which macro-m can transmit during each ABS-
period (clearly, Nsf − Nm ABS subframes are offered by
macro-m in each ABS-period). Let xu be the time-average
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air-time4 in sub-frames per ABS-period UE-u gets from mu,
the candidate best macro for UE-u. Note that xu need not be an
integer. The airtime that UE-u gets from a pico can be during
ABS subframes or regular subframes because pico eNBs
can transmit during ABS subframes and regular subframes.
To this end, we define yAu and ynAu as the time-average
airtime in subframes per ABS-period UE-u gets from pico pu
(best candidate pico of UE-u) in ABS subframes and regular
subframes respectively. Also, let Ru be the average throughput
UE-u achieves.

Optimization constraints: These are explained below.
1) Association constraints: The association constraint es-

sentially states that a UE can associate with either the
macro or a pico but not both. Thus,

∀ u ∈ U : xu(y
A
u + ynAu ) = 0 (3)

xu ≥ 0, yAu ≥ 0, ynAu ≥ 0 .

so that, either the total airtime u gets from macro is
zero or the total airtime u gets from pico is zero.

2) Throughput constraints: This implies that the average
throughput for a UE-u, Ru, cannot be more than what
is available based on the air-times from associated
macro/pico.

∀ u ∈ U : Ru ≤ rmacrou xu + rpico,ABSu yAu + rpicou ynAu .
(4)

Note that, from (3), if UE-u is associated to a macro,
then Ru ≤ rmacrou xu; if UE-u is associated to a pico,
then Ru ≤ rpico,ABSu yAu + rpicou ynAu .

3) Interference constraints: The interference constraint
states that the ABS subframes used by a pico p are
offered by all macros in the set Ip that interfere with
the pico. In other words,

∀ (p,m ∈ Ip) : Ap +Nm ≤ Nsf . (5)

4) Total airtime constraints: This ensures that the total
time-average airtime allocated to UE’s from a macro or
a pico is less than the total usable subframes. This can
be described using the following inequalities.

∀ m ∈M :
∑
u∈Um

xu ≤ Nm (6)

∀ p ∈ P :
∑
u∈Up

yAu ≤ Ap (7)

∀ p ∈ P :
∑
u∈Up

(yAu + ynAu ) ≤ Nsf (8)

Optimization objective and problem statement: The opti-
mization objective we choose is the tried and tested weighted
proportional-fair objective which maximizes

∑
u wu lnRu,

where wu represents a weight associated with UE u. This
choice of objective has three benefits. Firstly, it is well known
that proportional-fair objective strikes a very good balance
between system throughput and UE-throughput fairness [21].
This bodes well with the goal of improving cell-edge through-
put using eICIC. Secondly, such a choice of objective gels very
well with the underlying LTE MAC where the most prevalent
approach is to maximize a proportional-fair metric. Finally,
the weights wu provides a means for service-differentiation [2]
which is a key element in LTE. The weights may be induced

4This time-average airtime can be achieved through MAC scheduling,
particularly weighted proportional-fair scheduling. We are implicitly assuming
two time-scales here: the ABS selection happens at a slow time-scale and
MAC scheduling happens at a fast time-scale resulting in a time-average
airtime for each UE.

from policy-determining functions within or outside of radio
access network. Though we use proportional-fair metric in this
paper, our algorithms can be easily modified to work for other
utility functions.

The problem can be stated as follows:

OPT-ABS

Given: A set of UEs U , a set of picos P , and a set of
macrosM. For each UE u ∈ U we are given the following:
best candidate parent macro mu along with PHY data
rate to mu denoted by rmacrou , the best candidate parent
pico pu along with ABS and non-ABS PHY data rate
to candidate parent pico denoted by rpico,ABSu and rpicou
respectively. We are also given the macro-pico interference
graph in which the interfering macros of pico-p is denoted
by Ip. Finally, Nsf is the total number of subframes.

To compute: We wish to compute the number of ABS
subframes Ap each pico-p can use, the number of non-ABS
subframes Nm left for macro-m’s usage, a binary decision
on whether each UE-u associates with its candidate parent
pico or candidate parent macro, throughput Ru of each UE-
u, so that the following optimization problem is solved:

maximize{xu,yAu ,y
nA
u ,Ap,Nm,Ru}

∑
u

wu lnRu

subject to, (3), (4), (5), (6), (7), (8)

∀ (p,m ∈ Ip) : Ap, Nm ∈ Z+ ,

where Z+ denotes the space of non-negative integers.

We also call the optimization objective as system utility and
denote it, as a function of the all UE’s throughput-vector R,
by

Util(R) =
∑
u

wu lnRu .

Remark 2. (ACCOUNTING FOR ICIC) Though eICIC or time-
domain resource sharing is the preferred mode of resource
sharing between macro and pico cells in LTE for reasons
mentioned in Section II-B, eICIC could co-exist with ICIC in
macro-cells. Our framework can easily account for this with
only changes in the input to the problem. In ICIC, the OFDMA
sub-carriers of a macro are partitioned into two parts: low-
power sub-carriers of total bandwidth Bl and high-power sub-
carriers of total bandwidth Bh. Thus for a UE u that receives
signal from macro-m, the spectral efficiency over low-power
subcarriers (say, ηlowu ) is different from spectral efficiency over
high-power subcarriers (say, ηhighu ). This causes the downlink
rate from the candidate parent macro, rmacrou , to be expressed
as rmacrou = ηhighu Bh + ηlowu Bl. Furthermore, the reduced
interference from ICIC-using macros changes the macro-pico
interference graph structure and pico to UE non-ABS rates.
Importantly, only the input to OPT-ABS has to be modified
to account for ICIC in frequency domain.

Remark 3. (COMP) Our framework assumes no CoMP based
deployments. This would be the case in the most LTE deploy-
ments in the foreseeable future due to practical challenges
of CoMP outlined in Section II-B. Technically speaking, to
optimize a modified version of eICIC that accounts for CoMP,
the association constraint given by (3) would not be required,
the throughput constraint (4) must account for collaborating
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cells in CoMP, and the total airtime constraints must be
modified to reflect CoMP. We leave this as a future work.

A. Computational hardness

It can be shown that the ABS-optimization problem is NP-
hard even with a single macro but multiple picos. We state the
result as follows.

Proposition 1. Even with a single pico and a single interfering
macro, the OPT-ABS problem is NP-hard unless P = NP .

Proof. Follows by reducing the SUBSET-SUM problem [7]
to an instance of OPT-ABS problem. See Appendix A for a
proof-sketch.

In light of the above result, we can only hope to have algo-
rithm that is provably a good approximation to the optimal. In
the following, we will develop an algorithm with a constant-
factor worst case guarantee; we show extensive simulation
results to demonstrate that our algorithm is within 90% of
the optimal is many practical scenarios of interest.

V. ALGORITHM OVERVIEW

Our approach to the problem is to solve it in two steps.
1) Solving the relaxed NLP: In the first step, we solve

the non-linear program (NLP) obtained by ignoring
integrality constraints on Ap and Nm and also the
constraint that a UE can receive data either from pico
or macro but not both. Specifically, in this step, we
maximize Util(R) subject to the constraints (4)-(8); and
we allow Ap and Nm to take non-integer values. Note
that ignoring the constraint (3) means that UEs can
receive radio resources from macro and pico both. For
notational convenience, we also denote the vector of
constraints (4)-(8), in a compact form as gR(.) ≤ 0 .
Thus, the RELAXED-ABS problem can be denoted as,

RELAXED −ABS :

maximize{xu,yAu ,y
nA
u ,Ap,Nm}

∑
u

wu lnRu

subject to, gR(.) ≤ 0

∀ (p,m ∈ Ip) : Ap, Nm ∈ R+ ,

where R+ denotes the space of non-negative real num-
bers and gR(.) denotes the vector of constraints (4)-(8).

2) Integer rounding: In the second step, we appropriately
round the output of the non-linear optimization to yield
a solution to the original problem that is feasible.

VI. ALGORITHM FOR RELAXED NON LINEAR PROGRAM

Towards solving ABS-RELAXED, we use a dual based ap-
proach [13], [3] which has been successfully applied to many
networking problems for its simplicity of implementation [4],
[18]. In the following, we show that, a dual based approach to
our problem lends to a decomposition that greatly reduces the
algorithmic complexity and also makes the approach amenable
to distributed implementation while retaining the core essence.

In a dual based approach, it is crucial to define a suitable
notion of feasible sub-space so that the solution in each
iteration is forced to lie within that sub-space. The choice of
the sub-space also has implication on the convergence speed
of the algorithm. To this end, we define the sub-space Π as
follows:

Π ={x,y,A,N : Ap ≤ Nsf , Nm ≤ Nsf ,
∑
u∈Um

xu ≤ Nsf ,∑
u∈Up

yAu ≤ Nsf ,
∑
u∈Up

ynAu ≤ Nsf , ∀ m, p} (9)

We have used bold-face notations to denote vectors of
variables. Clearly, any solution that satisfies the constraints
described in the previous section lies within Π. In the follow-
ing discussion, even without explicit mention, it is understood
that optimization variables always lie in Π.

We now describe the non-linear program (NLP) obtained
by treating Ap and Nm as real numbers. The Lagrangian of
the relaxed NLP can be expressed as follows:

L(x,y,A,N,λ, µ, β, α) =
∑
u

wu lnRu (10)

−
∑
u

λu(Ru − rmacrou xu − rpico,ABSu yAu − rpicou ynAu )

−
∑

p,m∈Ip

µp,m(Ap +Nm −Nsf )

−
∑
m

βm(
∑
u∈Um

xu −Nm)−
∑
p

βp(
∑
u∈Up

yAu −Ap)

−
∑
p

αp(
∑
u∈Up

(yAu + ynAu )−Nsf )

Additional notations: We use bold-face notations to express
vectors. For example λ denotes the vector of values λu.
The variables λ, µ, β, α’s are dual variables and so called
Lagrange-multipliers which also have a price interpretation. In
the rest of the paper, p denotes the vector of all dual variables,
i.e., p = (λ, µ, β, α)5. Similarly, the variables x,y,A,N are
referred to as primal variables and we use z to denote the
vector of all primal variables, i.e., z = (x,y,A,N). Thus, we
denote the Lagrangian by L(z,p) and express it as

L(z,p) = Util(R) − p′gR(z) .

The dual problem of RELAXED-ABS can be expressed as

min
p≥0
D(p) , (11)

where,
D(p) = max

z∈Π
L(z, p) . (12)

Since the RELAXED-ABS is a maximization problem with
concave objective and convex feasible region, it follows that
there is no duality gap [3], and thus

RELAXED-ABS Optimal = min
p
D(p) .

Iterative steps: First the primal variables are initialized to
any value with Π and the dual variables are initialized to zero,
and then, the following steps are iterated (we show the update
for iteration-t):

1) Greedy primal update: The primal variables zt in
iteration-(t+ 1) are set as

zt+1 = argmax
z∈Π
L(z, pt) . (13)

5The dual variables are often denoted by p because they have the interpre-
tation of prices.
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2) Subgradient descent based dual update: The dual vari-
ables are updated in a gradient descent like manner as

pt+1 = [pt + γgR(zt)]
+ , (14)

where pt is the dual variable at iteration-t, γ is the step-
size, and [.]+ denotes component-wise projection into
the space of non-negative real numbers.

The above steps are continued for sufficiently large number
of iterations T and the optimal solution to RELAXED-ABS
is produced as

ẑT = 1
T

T∑
t=1

zt .

The computation of greedy primal update is not immediate
at a first glance, however, the subgradient descent based dual
update step is straightforward. Thus, for the above algorithm
to work, there are two important questions that need to be
answered: (i) how can the greedy primal update step be
performed efficiently? (ii) how should the step size γ and the
number of iterations T be chosen? In the following, we answer
these questions.

A. Greedy Primal Update: Decomposition Based Approach
We now argue that the problem of computing

argmax
z∈Π
L(z, pt−1)

can be decomposed into UE problem, macro problem and pico
problem each of which is fairly straightforward. Towards this
end, we rewrite L(z, p) as follows.

L(z,p) =
∑
u

Fu(p, Ru) +
∑
m

Gm(p, {xu}u∈Um , Nm)

+
∑
p

Hp(p, {yu}u∈Up , Ap)−Nsf ,

where,

Fu(p, Ru) = wu lnRu − λuRu
Gm(p, {xu}u∈Um , Nm) = Nm(βm −

∑
p:m∈Ip

µp,m)

+
∑
u∈Um

xu(λur
macro
u − βm)

Hp(p, {yu}u∈Up , Ap) = Ap(βp −
∑

m:m∈Ip

µp,m)

+
∑
u∈Up

yAu (λur
pico,ABS
u − βp − αp) +

∑
u∈Up

ynAu (λur
pico
u − αp)

It follows that,

max
z∈Π
L(z,p)

=
∑
u

max
Ru

Fu(p, Ru) +
∑
m

maxGm(p, {xu}u∈Um , Nm)

+
∑
p

maxHp(p, {yu}u∈Up , Ap)−Nsf

where the max in the above is with respect to appropriate
primal variables from xu, yu’s, Nm’s and Ap’s. The above
simplification shows that greedy primal update step can be
broken up into sub-problems corresponding to individual UEs,
individual macros, and individual picos; each of the sub-
problems has a solution that is easy to compute as follows.
We thus have the following.

Greedy primal update: In iteration-t, the greedy primal
updates are as follows:
• User primal update: In greedy primal update step of

iteration-(t+1), for each UE-u, we maximize Fu(pt, Ru)
by choosing Ru(t+ 1) as

Ru(t+ 1) = wu

λu(t)
. (15)

• Macro primal update: In greedy primal update step
of iteration-(t + 1), for each macro-m, we maximize
Gm(pt, {xu}u∈Um , Nm) by choosing Nm as

Nm(t+ 1) = Nsf I{(βm(t)−
∑

p:m∈Ip µp,m(t)>0)} . (16)

To compute all {xu}u∈Um , each macro-m computes the
best UE u∗m in iteration-t as

u∗m = arg max
u∈Um

(λu(t)r
macro
u − βm(t) > 0)

where ties are broken at random. Macro-m then chooses
xu(t+ 1), u ∈ Um as

xu(t+ 1) =

{
Nsf for u = u∗m
0 for u 6= u∗m

(17)

• Pico primal update: In iteration-(t+1), for each pico-p,
we maximize Hp(pt, {yu}u∈Up , Ap) by choosing

Ap(t+ 1) = Nsf I{(βp(t)−
∑

m:m∈Ip µp,m(t)>0)} . (18)

To compute all {yu}u∈Up ’s, each pico-p computes the
current best UE u∗p(ABS) and u∗p(nABS) as follows:

u∗p(ABS) = arg max
u∈Up

(λur
pico,ABS
u −βp(t)−αp(t) > 0) ,

u∗p(nABS) = arg max
u∈Up

(λu(t)r
pico
u − αp(t) > 0) .

where ties are broken at random. Pico-p then chooses
yu(t+ 1), u ∈ Up as

yAu (t+ 1) =

{
Nsf for u = u∗p(ABS)
0 for u 6= u∗p(ABS)

(19)

Similarly, we set ynAu (t) based on u∗p(nABS) as follows.

ynAu (t+ 1) =

{
Nsf for u = u∗p(nABS)
0 for u 6= u∗p(nABS)

(20)

B. Overall Algorithm for RELAXED-ABS
We now summarize the algorithmic steps for solving

RELAXED-ABS. Algorithm 1 formally describes our algo-
rithm.

We next derive the step-size and sufficient number of
iterations in terms of the problem parameters.

C. Step-size and Iteration Rule using Convergence Analysis
Towards the goal of estimating the step-size and number of

iterations, we adapt convergence analysis for a generic dual
based algorithm is provided in [13]. We show that the structure
of ABS-RELAXED lends to a simple characterization of
the step-size and number of iterations in terms of problem
parameters.

In this section, we denote by rmax and rmin as the maxi-
mum and minimum data rate of any UE respectively. We also
denote by Wm as the total weight of all candidate UEs of
macro-m and similarly for Wp. Also W denotes the vector of
Wm’s and Wp’s. Also Um, Up, Umax denote, respectively, the
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Algorithm 1 OPTIMAL RELAXED-ABS: Algorithm for
Solving RELAXED-ABS

1: Initialization: Initialize all the variables x, y,A,N, λ, µ, β, α
to any feasible value.

2: for t = 0, 2, 3, . . . , T iterations do
3: Primal update: Update the primal variables z(t) by using UE’s

update given by (15), macro updates given by (16), (17), and
pico updates given by (18), (19, (20).

4: Dual Update: For each UE-u λu(t) is updated as

λu(t)← [λu(t− 1)+

γ(Ru(t)−rmacrou xu(t)−rpico,ABSu yAu (t)−rpicou ynAu (t))]+ .

For each macro-m, we update its dual price βm as follows:

βm(t)← [βm(t− 1) + γ(
∑
u∈Um

xu(t)−Nm(t))]+

For each pico p, we update all dual variables βp, αp and µp,m
for all m ∈ Ip, as follows:

µp,m(t)← [µp,m(t− 1) + γ(Ap(t) +Nm(t)−Nsf )]+

βp(t)← [βp(t− 1) + γ(
∑
u∈Up

yAu (t)−Ap(t))]+

αp(t)← [αp(t− 1) + γ(
∑
u∈Up

(yAu (t) + ynAu (t))−Nsf )]+

5: end for
6: The optimal values of the NLP are obtained by averaging over

all iterations:

ẑT = 1
T

T∑
t=1

zt,

number of candidate UEs in macro-m, number of candidate
UEs in pico-p, and maximum number of UEs in any macro
or pico.

Proposition 2. Let zt, ẑt, z
∗ (pt, p̂t,p∗) denote the vector of

primal (dual) variables at time t, averaged over all iterations
from 0−t, and at optimality, respectively. Under mild technical
assumptions (see Appendix) we have the following:

(i) D(p̂T )−D(p∗) ≤ B2

2γT
+ γQ2

2

(ii) Util(R∗)− Util(R̂T ) ≤ γQ2

2

where

Q2 = N2
sf (Nr

2
max +M + P + 2I)

B2 = ‖W‖2

N2
sf

(1 + 2Imax +
Umax
rmin

) .

Proof. See B.

Remark 4. (ON THE PROOF OF PROPOSITION 2) The main
contribution of the proof of Proposition 2 is to show that the
norm of optimal dual variable ‖p∗‖2 can be upper bounded by
network parameters. This upper bound, along with adaptation
of convergence analysis in [13], readily characterizes the step-
size and number of iterations for RELAXED-ABS; this is unlike
arbitrary convex programs where the convergence results are
in terms of a generic slater vector [13].

Remark 5. (STEP-SIZE AND NUMBER OF ITERATIONS.) The
step-size and number of iterations can be set based on the two
following principles:

1) Suppose we want the per-UE objective to deviate from
the optimal by no more than ε. Then, Proposition 2 can

be used to set γ and T as follows:

γQ2

2 ≤ Nε
2 and B2

2γT ≤
Nε
2 . (21)

The above imply,

γ = Nε
Q2 and T = (QBNε )

2 . (22)

Since the maximum interferers Imax is typically a
small number, a moments reflection shows that γ =
O(ε/N2

sfr
2
max) and T = O(w2

maxUmax/ε
2rmin) where

wmax is the maximum vaue of wu. In other words, the
number of iterations simply depends on the maximum
UEs in any cell and not on the overall number of UEs.

2) The number of iterations required can be significantly
reduced using the following observation. Suppose the
macro-pico interference graph can be decomposed into
several disjoint components. In that case, we can run
the RELAXED-ABS algorithm for each component in-
dependently (possibly parallaly). For each interference
graph component, we can use the step-size and iteration
rule prescribed in the previous paragraph.

VII. INTEGER ROUNDING OF RELAXED-ABS

In this section, we show how solution to RELAXED-ABS
can be converted to a feasible solution for the original problem
OPT-ABS. There are two challenges in performing this step.
Firstly, in OPT-ABS, each UE can receive resources either
from a macro or a pico but not both unlike RELAXED-ABS.
Secondly, as with all dual based sub-gradient algorithms, after
T iterations of running RELAXED-ABS, the solution may
violate feasibility, albeit by a small margin [13]. Thus, we
need to associate each UE with a macro or a pico and round
the values of Nm’s and Ap’s so that the overall solution is
feasible and has provable performance guarantee.

To this end, we first introduce the following rounding
function:

RndNsf
(x) =

{
bxc , x ≥ Nsf

2

dxe , x <
Nsf

2

(23)

The rounding algorithm is formally described in Algorithm 2.
The algorithm has three high-levels steps. In the UE as-

sociation step, each UE who gets higher throughput from
a macro in the solution of ABS-RELAXED is associated
with a macro, and, each UE who gets higher throughout
from a pico gets associated with a pico. In the next step
called ABS rounding, the UE association decisions are used
to obtain the ABS and non-ABS subframes. Indeed, this step
produces a feasible Ap’s and Nm’s as we show later in our
result. Finally, in the throughput computation step, each UE’s
available average airtime is scaled to fill-up the available sub-
frames. The throughput of each UE can be computed from
this.

Performance guarantees: The worst case performance guar-
antee of the output produced by Algorithm 2 depends on
the number of iterations and step-size used for running Al-
gorithm 1 prior to running Algorithm 2. This is shown by
the following result. Let R∗u be the throughput computed by
Algorithm 2 and let Roptu be the optimal throughput.

Proposition 3. Algorithm 2 produces feasible output to the
problem OPT-ABS. Furthermore, for any given δ > 0, there
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Algorithm 2 ROUND RELAXED-ABS: Algorithm for Inte-
ger Rounding of Output of Algorithm 1

1: User Association: For all u ∈ U , perform the following steps:
1) Compute the throughput u gets from macro and pico in

RELAXED-ABS solution as follows:

Rmacrou = rmacrou x̂u

Rpicou = rpico,ABSu ŷAu + rpicou ŷnAu ,

where, x̂u, ŷAu , ŷnAu are the out of Algorithm 1.
2) If Rmacrou > Rpicou , UE-u associates with the macro, else

it with pico.
Define and compute U∗m, the set of UEs associated with macro-
m after the UE association step. Similarly define and compute
U∗p for every pico-p.

2: ABS Rounding: Compute integral N∗m’s and A∗p’s as follows:

N∗m = RndNsf (N̂m) ∀m ∈M
A∗p = RndNsf (Âp) ∀p ∈ P

where N̂m and Âp denote the output of Algorithm 1.
3: Throughput computation: For each macro-m, for all u ∈ U∗m,

the final value of x∗u, R∗u are

x∗u =
x̂uN

∗
m

Xm
and R∗u = rmacrou x∗u . (24)

where Xm =
∑
u∈U∗m

x̂u .

For every pico, compute the ABS-utilization Y Ap and non-ABS
utilization Y nAp as

Y Ap =
∑
u∈U∗p

ŷAu , Y nAp =
∑
u∈U∗p

ŷnAu .

Next, for each pico-p, for all u ∈ U∗m, the final values of
yAu ∗, ynAu ∗, R∗u are

yAu
∗
=

ŷAu A
∗
p

Y A
p

, ynAu
∗
=

ŷnA
u (Nsf−A∗p)

Y nA
p

(25)

R∗u = rpico,ABSu yAu
∗
+ rpicou ynAu

∗
(26)

The system utility is computed as Util(R∗) =
∑
u wu lnR

∗
u.

exists T large enough (but, polynomial in the problem param-
eters and 1/δ) and γ satisfying (21) such that, if we apply
Algorithm 2 to the output of Algorithm 1 with this T, γ, then

Util(2(1 + δ)R∗) ≥ Util(Ropt)

Proof. See Appendix C for an outline.

Remark 6. Proposition 3 shows that, for sufficiently large but
polynomial number of iterations, the worst case approximation
factor is close to 2. It is important to realize that, as with
all NP-hard problems, this is simply a worst case result.
Our evaluation with several real topologies suggest that the
performance of our algorithm is typically within 90% of the
optimal. Also, in practice, we recommend using the step-size
and number of iterations given by (22).

VIII. COMPUTING CELL SELECTION BIAS AND ABS
PATTERNS

In this section, we describe two important computations that
are relevant for realization of eICIC, namely, Cell Selection
Bias (CSB) based UE association and converting ABS num-
bers into ABS patterns.

A. Cell Selection Bias for UE Association
Our solution so far solves the coupled problem of optimiz-

ing ABS sub-frames and UE association. However, UE asso-
ciation in LTE HetNets need to be standard compliant. While
standards on this are evolving, one proposed methodology by
the LTE standard is a rule based on cell selection bias [6].
Precisely, if bc is the cell-selection bias of cell-c (which could
be a macro or apico), then UE-u associates with cell ca such
that,

ca = max
c

[bc + RSRPu,c] , (27)

where RSRPu,c is the received RSRP of cell-c at UE-u. The
choice of ca is a design issue. We wish to choose values of
bc so that UE association based on rule given by (27) leads
to association decisions derived in the previous section by our
optimization algorithm.

Obtaining cell specific biases that precisely achieves a
desired association may not always be feasible. Thus, we
propose to compute biases so that the “association error” (as
compared to optimal association) is minimized. We do this
using the following steps.

1) Since the relative bias between picos and macros matter,
set all biases of macros to zero.

2) Let Cp,m be the set of UEs who have pico-p as the
best candidate pico, and also, macro-m as the best
candidate macro, i.e., Cp,m = Up ∩ Um. From the UEs
in the set Cp,m, let W ∗p,m be the total weight of UE’s
associated to pico-p under UE association produced by
our algorithm in the previous section. Also from UEs
in Cp,m, as a function of bias b, let Wp,m(b) be the
total weight of UEs that would associate with pico-
p if the bias of pico-p were set to b. In other words,
Wp,m(b) =

∑
u∈Dp,m(b) wu where

Dp,m(b) = {u ∈ Cp,m : RSRPu,p + b ≥ RSRPu,m} ,

where RSRPu,m and RSRPu,p are received power (in
dBm) of reference signal at UE-u from best candidate
macro and best candidate pico respectively. This step
computes W ∗p,m and Wp,m(b) for every interfering pico-
macro pair (p,m0 and every permissible bias value.

3) For every pico-p, cell selection bias bp is set as

bp = argmin
b

 ∑
m∈Ip

|Wp,m(b)−W ∗p,m|
2

 . (28)

Thus, the bias values are chosen as the one that mini-
mizes the mean square error of the association vector of
number of UEs to different picos.

Remark 7. (MAXIMUM AND MINIMUM BIAS CONSTRAINT.)
In many scenarios, operators that deploy picos may desire to
have a maximum or minimum bias for a pico-p (say, bp,max
and bp,min). For example, if a pico is deployed to fill a
coverage hole or high demand area, then the bmin should be
such that UEs around the coverage hole get associated with
the pico. This can be handled using the following steps:

1) First run the joint UE-association and ABS-
determination algorithm (Algorithm 1 and Algorithm 2)
by setting rmacrou = 0 for all UEs that get associated
with the pico even with minimum bias, and rpicou = 0
for all UEs that do not get associated with the pico
even with maximum bias.
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2) Next execute the 3 steps for cell-bias determination
described in this section but with the minor modification
in (28) so that the argmin operation is restricted to
b ∈ [bp,min, bp,max].

B. Converting ABS numbers into ABS patterns
In the previous sections, we have provided techniques to

compute number of ABS subframes for every Nsf subframes
(i.e., ABS subframes per ABS-period). In practice, we also
need to specify the exact subframes in an ABS-period that are
used as ABS subframes. The ABS number can be converted
into a pattern as follows:

1) Index the subframes in an ABS-period in a consistent
manner across all macros and picos.

2) Suppose a macro-m leaves out k out of Nsf subframes
as ABS subframes. Then macro-m offers the first-k
subframes as ABS subframes where the first-k relates
to the indexing in the previous step.

This simple scheme works provided all macros have the
same set of permissible sub-frames if required (i.e., there is
no restriction on certain macro that it cannot offer certain
subframes as ABS). Notice that, since a pico can effectively
use the least number of ABS offered by interfering macros,
this scheme would naturally ensure a provably correct mapping
between number of ABS and ABS-pattern.

IX. EVALUATION USING RF PLAN FROM A REAL
NETWORK

We evaluated our algorithms using RF plan from a real
network deployment by a popular operator in Manhattan,
New York City. The goal of our evaluation is four folds.
First, to compare our proposed eICIC algorithm with other
alternative schemes. Second, to understand the optimality gap
of our algorithm because we have shown that optimizing
eICIC parameters is NP-hard. Third, to understand the benefits
offered by eICIC because operators are still debating whether
the additional complexity of eICIC is worth the gains. Fourth,
we show some preliminary results on how eICIC gains vary
with pico transmit power and UE density.
A. Evaluation Framework

Topology: We used an operational LTE network deployment
by a leading operator in New York City to generate signal
propagation maps by plugging in the tower and terrain infor-
mation along with drive-test data into a commercially available
RF tool that is used by operators for cellular planing [1]. In
Figure 3, we show the propagation map of the part of the
city that we used for evaluation, along with the macro-pico
interference graph for nominal pico transmit power of 4W.
The RF plan provides path loss estimates from actual macro
location to different parts of the city. For the purpose of this
study, we selected an area of around 8.9 km2 in the central
business district of the city. This part of the city has a very
high density of macro eNB’s due to high volume of mobile
data-traffic. The macro eNB’s are shown in blue color with
sectorized antennas and these eNB’s are currently operational.
While macro cells used in our evaluation are from the existing
network, LTE pico cells are yet to be deployed in reality. Thus
the pico locations were manually embedded into the network
planning tool. We carefully chose 10 challenging locations for
our picos: some are chosen with locations with poor macro
signals, some pico locations are chosen with high density of
interfering macros, some are chosen to coincide with traffic
intensity hotspots, and one pico is also deeply embedded

Fig. 3. Propagation map of the evaluated LTE network in New York City and
the associated macro-pico interference graph. The blue eNB’s are the macros
and are currently operational. The grey eNB’s are low power picos and we
manually placed them in the tool. Pico-10, Pico-3, Pico-5, Pico-9 have traffic
hotspots around them.

into a macro-cell. The picos are shown in red circle with
omnidirectional antennas.

All eNB’s support 2 × 2 MIMO transmissions. UEs have
2× 2 MIMO MMSE-receivers that are also equipped with in-
terference cancellation (IC) capability to cancel out broadcast
signals from macro during pico downlink transmissions over
ABS subframes.

Important Cell Parameters: The macro eNB’s have trans-
mit power of 45 dBm (31 W). For the picos, we evaluated
with 3 different settings of transmit powers: 36 dBm (4 W),
30 dBm (1 W), and 27 dBm (500 mW). The bandwidth is
10 MHz in the 700 MHz LTE band. The pico heights are
chosen as typically 30 ft above the ground and macro heights
are variable based on actual deployment and are typically
much higher (more than 100 ft in many instances.). We choose
Nsf = 40 so that we can obtain the number of ABS offerings
in every 40 subframes. Also, we allow a maximum bias of
15 dB for any pico because this is a typical restriction in
current networks.

Traffic: While the macros and the propagation map used in
our evaluation is for a real network, we create synthetic UE
locations for our evaluation because LTE pico deployments are
still not very prevalent. This is done as follows. In the area
under consideration, we chose a nominal UE density of around
450 active UEs/sq-km (dense urban density). In addition, we
created UE hotspots around Pico-10, Pico-3, Pico-5, and Pico-
9. The hotspots around Pico-3, Pico-5, Pico-9 have double the
nominal UE density and the traffic hotspot around Pico-10
has 50% more UE density than nominal. We also performed
evaluation by varying the UE density around the macro cells
to 225 active UEs/sq-km (urban density) and 125 UEs/sq-km
(sub-urban density) without altering the hotspot UE densities
around the selected picos. As we discuss in Section X, in
practice, network measurements would be available in terms
of average traffic load and SINR distribution from which the
UE locations can be sampled.

Methodology: The radio network planning tool (RNP) [1]
and our eICIC implementation were used to generate the
results as follows.

1) RNP tool was used to generate signal propagation matrix
in every pixel in the area of interest in New York City as shown
in Figure 3.

2) The RNP tool was then used to drop thousands of UEs
in several locations based on the aforementioned UE density
profiles. All UEs had unit weights (as in weighted proportional
fair).

3) Based on the signal propagation matrix and UE locations,
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Fig. 4. Comparison of proposed eICIC with fixed eICIC pattern for
5th, 10th, 50th percentile of UE-throughput. Plots are for pico transmit
power of 4 W.

we invoked the built-in simulation capability of RNP tool to
generate the macro-pico interference graph and the following
donwlink SINR’s for every UE: best-macro SINR, best-pico
ABS SINR, best-pico non-ABS SINR. These SINR values
were converted to physical layer rates using LTE look-up table.
This step essentially produces the complete set of inputs for
OPT-ABS problem as follows.

4) Then this input-data was fed into our implementation of
proposed eICIC and other comparative schemes described in
Section IX-B.

Thus we used RNP too to generate synthetic input that is
representative of SINR and path-losses in a live network.

B. Comparative eICIC Schemes
The three schemes we compare are as follows.
1) Proposed eICIC: This is the proposed algorithm de-

veloped in this paper. Just to summarize, we first apply
Algorithm 1 and the rounding scheme in Algorithm 2 and
finally we use the technique described in Section VIII-A for
obtaining CSB’s.

2) Fixed eICIC Pattern: Another option is to use a fixed
or uniform eICIC pattern across the entire network. In [9], the
authors have performed evaluation with fixed eICIC patterns.
Also [11] considers fixed eICIC parameters. We also compare
our proposed eICIC algorithm to the following four (ABS,
CSB) combinations: (5/40, 5 dB), (10/40, 7.5 dB), (15/40,
10 dB), (15/40, 15 dB). The fixed patterns represent the range
of eICIC parameters considered in the literature.

3) Local Optimal Heuristic: This is a local optimal based
heuristic that is very easy to implement and is also amenable
to distributed implementation. This scheme works as follows.
First, each pico sets individual biases to maximize the total
improvement (as compared to zero-bias) of physical layer rates
(by considering the ABS rates) of all UEs within the coverage
range of the pico. This step readily provides the set of UEs that
associate with picos. In the next step, each macro m obtains
the fraction (say, am) of UEs within its coverage range that
associates with itself and then the macro offers dNsf (1−am)e
as ABS sub-frames. Each pico can only use minimum number
of ABS sub-frames offered by its interfering macros.

C. Results
For our results, we consider all UEs in the coverage area

of deployed picos and all macros that interfere with any of
these picos. Clearly, these are the only UEs that are affected
by eICIC or picos.

Comparison with other schemes: In Figure 4, we compare
our algorithm to different network wide fixed ABS settings.
The interesting comparison is between our proposed eICIC
algorithm and fixed (ABS, CSB) setting of (15/40, 15 dB)
which corresponds to a CSB value of maximum possible
15 dB; all other fixed eICIC schemes perform poorly. This

Fig. 5. Comparison of proposed eICIC with the local optimal heuristic for
5th, 10th, 50th, 90th percentile of UE-throughput. The plots are with pico
transmit power of 4 W.

TABLE II
COMPARISON OF TOTAL LOG-UTILITY (TOTAL OF LOGARITHM OF UE

THROUGHPUTS IN KBPS/MHZ) FOR DIFFERENT MACRO UE DENSITY AND
PICO POWERS. DU, U, SU STAND FOR DENSE URBAN, URBAN, AND

SUB-URBAN UE DENSITY.
(Macro Proposed Local Fixed Fixed Fixed Fixed
Density, eICIC Opt (5,5) (10,7.5) (15,10) (15,15)

Pico
Power)
DU,4W 5123.4 4799.4 4941.5 4886.3 4770.0 4837.1
DU,1W 4984.0 4669.5 4786.1 4724.2 4609.8 4707.7
DU, 1

2
W 4232.3 4018.6 4036.6 3976.7 3879.3 4001.3

U,4W 3356.9 3154.2 3257.9 3227.9 3175.1 3212.6
SU,4W 2209.2 2032.9 2137.5 2124.5 2094.0 2123.8

fixed eICIC setting of (15/40, 15 dB) appears to perform better
than our scheme for all UEs in the pico footprint area because
it associates all UEs in the pico footprint area to the pico;
whereas, our scheme does not necessarily associate all UEs in
the pico footprint area to the pico. However, the fixed eICIC
scheme fails to account for the overall network performance
as the macro UEs have to sacrifice far greater (compared to
our scheme) throughput due to eICIC. Indeed, the throughput
percentiles of all UEs in the system, for any fixed eICIC
scheme, is reduced compared to our algorithm as we can see
from the plot in the bottom panel of Fugure 4. For example,
our proposed eICIC improves the 5th, 10th, 25th percentile
throughput of Fixed-(15/40, 15 dB) eICIC configuration by
30 − 40%. For specific macros that do not interfere with
any hotspot picos, this improvement is more than 50%. In
typical deployments where many macros may have few or no
pico neighbors in the macro-pico interference graph unlike our
evaluation topology, the loss of the overall system performance
could be more pronounced due to fixed eICIC configuration.
Also, finding a good but fixed eICIC setting could also be
challenging. Table II also shows that the overall log-utilty of
the system is better with our proposed scheme compared to
the fixed eICIC schemes.

In Figure 5, we compare the proposed the eICIC with the
local optimal heuristic described in Section IX-B. Our scheme
outperforms the local optimal heuristic by a margin of more
than 80% for UEs in pico-footprint area; furthermore, the
overall systems performance is better with our scheme as can
be seen from the plot in the bottom panel of Figure 5 and
Table II. However, the local optimal heuristic is very easy
to implement and could be promising with additional minor
changes. We leave this as a future topic of research.

Optimality gap of our algorithm: Since the solution to
RELAXED-ABS is an upper bound to the optimal solution
of OPT-ABS, we obtain the optimality gap by comparing
our final solution to that produced by RELAXED-ABS (
Algorithm 1). We compute g, such that our algorithm is within
100 × (1 − g)% of the optimal, as follows. Suppose Rrelu
and Ralgu be the UE-u’s throughputs produced by RELAXED-
ABS and our complete algorithm respectively. Then, we say
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Fig. 6. CDF of UE throughputs with out proposed eICIC, no eICIC with
picos, and no picos. The plots are with pico transmit power of 4 W and dense
urban macro density.

that the optimality-gap is a factor g < 1 if
∑
u ln(R

alg
u ) ≥∑

u ln(R
rel
u (1− g)). The smallest value of g that satisfies this

can easily be computed. In Table III, we show for various
settings of macro UE densities and pico transmission power
that, our scheme is typically within 90% of the optimal.

TABLE III
OPTIMALITY GAP OF OUR ALGORITHM FOR DIFFERENT MACRO UE
DENSITY AND PICO POWERS. DU, U, SU STAND FOR DENSE URBAN,

URBAN, AND SUB-URBAN UE DENSITY.
(Macro density, DU, 4W DU, 1W DU, 1

2
W U, 4W SU, 4W

Pico power)
% of Optimal 93.77% 95.64% 95.86% 92.98% 97.03%

Benefits of eICIC: In the interference graph, we have 26
macros and 10 picos. In typical deployments, there are going to
be many more picos and macros. Thus, to understand the gains
that even a few picos can offer, we show the following plots
in Figure 6: CDF of throughputs of UEs in the pico coverage
area, and CDF of throughput of UEs outside of pico coverage
area. Thus, we wish to understand the gains of UE who
could potentially associate with the picos, and the performance
impact of UEs who do not have the option of associating
with picos. The plot in the top panel of Figure 6 shows the
throughput gains: (i) compared to no eICIC based scheme
the gains are more than 200% for the far-edge UEs (say,
2.5th percentile of the throughputs) and 40-55% for edge UEs
(5th−10th percentile of UE throughput), (ii) also, compared to
no pico, the gains are even more dramatic and around 300%
even for 5th percentile of the throughputs. The plot in the
bottom panel of Figure 6 shows that the throughput gains
(over no eICIC based pico deployment) of pico UEs do not
come at an appreciable expense of macro UEs’ throughput. In
other words, though the macro eNB’s have fewer subframes for
transmissions (due to ABS offered to picos) using eICIC, this
is compensated by the fact the macro UEs compete with fewer
UEs (many UEs end up associating with picos under eICIC).
Thus, there are great benefits of not only pico deployments,
but also eICIC based pico deployments.

eICIC gains with power and load variation: To better
understand the eICIC gains, in Figure 7 we compare the gains
of eICIC using our algorithm with pico deployment without
eICIC by varying the pico transmit powers and macro UE
densities. In the top panel, we show the percentage throughput
gain of eICIC scheme for different pico transmit powers for
5th, 10th, 50th percentile of UE throughputs. It can be seen
that, it is the edge UEs who really gain with eICIC; indeed,
this gain could even come at the expense of UEs close to the
pico (as can be seen with 1 W pico power scenario) who do
not gain much due to eICIC. The edge gain is also a direct
consequence of our choice of log-utility function as system
utility. In the bottom panel of Figure 7, we show the gains for
different macro UE density. It can be see that, higher macro

Fig. 7. %-Improvement in 5th, 10th, 50th percentile of UE throughput
with eICIC as opposed to no eICIC based pico deployment for different pico
transmits powers (left-panel plot) and different macro cell densities (right-
panel plot).

TABLE IV
REPRESENTATIVE ABS AND CSB VALUES (USING IC RECEIVERS)

Pico 1 2 3 4 5 6 7 8 9 10
Index
ABS 6 4 5 5 4 4 3 4 7 7
(out

of 40)
CSB 13.7 8.4 13.4 13.7 7 9.4 13.9 14 7.4 7.8
(dB)

UE density results in higher gain due to eICIC. Intuitively
speaking, more the UEs that have the choice of associating
with picos, larger are the eICIC gains from our algorithm. This
suggests the usefulness of our scheme for practical scenarios
with large number of picos and very high density in the traffic
hot-spot areas.

Optimal Parameters: In Table IV, we show the optimal
ABS received by each pico and the associated bias obtained
using our algorithm. There are a couple of interesting obser-
vations. First, the ABS offered to picos not only depends on
traffic load but also depends on the number of interferers. For
example, Pico-5 received 4 out 40 subframes for ABS though
it has a hotspot around it, however, Pico-1 received 6 out of
40 subframes for ABS without any hotspot around it. This is
because, Pico-5 has more neighbors in the macro-pico interfer-
ence graph. Second, Pico-2 which is embedded into a macro,
also receives 4 ABS subframes and serves as enhancing in-cell
throughput. Thus picos can go beyond improving throughput
in edges if eICIC parameters are configured in a suitable
manner. This also shows that there could be considerable
variation in optimal ABS and CSB settings. This explains the
poor performance of network wide fixed eICIC schemes.

X. SON AND EICIC: CHALLENGES AND DISCUSSION

A key aspect of LTE networks is its Self Optimized Net-
working (SON) capability. Thus, it is imperative to establish
a SON based approach to eICIC parameter configuration of
an LTE network. The main algorithmic computations of SON
may be implemented in an centralized or a distributed manner.
In the centralized computation, the intelligence is concentrated
at the Operations Support System (OSS) layer of the network,
while in the distributed computation the computation happens
in the RAN or eNB. The main benefit of a centralized approach
over a distributed approach is twofold: a centralized solution
in OSS is capable of working across base stations from
different vendors as is typically the case, and well-engineered
centralized solutions do not suffer from convergence issues of
distributed schemes (due to asynchrony and message latency).
Indeed, realizing these benefits, some operators have already
started deploying centralized SON for their cellular networks.
Nevertheless, both centralized and distributed approaches have
their merits and demerits depending on the use-case. Also, it is
widely accepted that, even if the key algorithmic computations
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happen centrally in OSS, an overall hybrid architecture (where
most heavy-duty computations happen centrally in OSS with
distributed monitoring assistance from RAN) is best suited for
complicated SON use-cases such as eICIC whereas complete
distributed approach is suited for simple use-cases like cell-
neighbor detection. We next discuss our prototype hybrid SON
for eICIC.

A. Hybrid SON Architecture

The architecture of our prototype is shown in Figure 8.
Apart from an operational wireless network, the architecture
has two major component-blocks: a network planning tool and
an engine for computing optimal eICIC configuration.

In our prototype the main optimization task is executed cen-
trally at the OSS level, but input distributions are provided by
the RAN and further estimated/processed in the OSS. From the
perspective of the optimization algorithm, centralization offers
the best possible globally optimal solution given accurate and
timely data inputs. We also assume that other affiliated SON
procedures, such as Automatic Neighbor Relations (ANR) are
executed in the RAN and their results reported to the OSS.
After the execution of the OSS optimization algorithms, the
optimal parameters propagate southbound towards the RAN
elements.

Monitoring in the RAN: As part of the Operations Admin-
istration and Maintenance (OA&M) interfaces, Performance
Management (PM) data are reported to all OSS applications,
SON-applications including. In general, we can have periodic
reporting or event-based reporting, an implementation choice
that trades latency and accuracy. Irrespective of the imple-
mentation, eICIC requires from the RAN, path loss statistics,
traffic load statistics and SINR statistics. Our prototype im-
plementation can flexibly accommodate the case of missing
data i.e. incomplete statistics, that is common during the
planning phase of the network or in the case where the required
inputs are not readily available by another vendor’s RAN
implementation. In these cases we can easily replace actual
network data with synthetic data generated by a radio network
planning tool.

The role of radio network planning (RNP) tools: Var-
ious Databases are used to import information necessary for
performing the radio network planning. Inventory information
that provides network topology, drive-tests that calibrate path
loss models as well as performance measurement data that
determine the shape and value of traffic intensity polygons in
the area of interest, are the most important information sources
aggregated in the RNP tool. RNP can use this information to
generate synthetic input data (using built-in simulation capabil-
ities of the tool) for our eICIC algorithm. For our purpose, we
used a planning tool [1] that uses the traffic map, propagation
map, and eNodeB locations to generate multiple snapshots of
UE locations. This input data is saved into a database. The
eICIC computation engine implements our proposed algorithm
to compute optimal eICIC parameters. The role of the radio
network planning tool as a prior distribution generator is
quite important in the planning as well as the initialization
procedures of a network element when measurements are
unavailable or too sparse.

B. Computational Flow

Average Load Based Input: The traffic data that is avail-
able from the real network comprises of average traffic load
information over a period of interest. Our method can be

Fig. 8. Prototype Architecture.

used for the purpose of obtaining the correct ABS and CSB
configuration can be used as follows.

We consider a scenario where, for each cell, average traffic
load and SINR distribution (in different subframes including
ABS subframes) are reported periodically. Indeed, such report-
ing is common in many real network deployments [14]. We
adapt our solution as follows:

1) Generation of sample UE location: Based on the traffic
map and SINR distribution, multiple system wide sam-
ple UE-location snapshots are generated (commercial
network planning tools usually have this capability).
Each sample UE-locations are translated into downlink
PHY-layer rate between UE and Macro, UE and Pico
with and without ABS. Note that, the exact location of
a sample UE is of little relevance, rather, the SINR to
the nearest macro and pico along with the RSRP values
are of relevance here.

2) Optimization for each snapshot: Based on the UE-
location snapshots, for each such sample snapshot, our
algorithm is run for solving OPT-ABS. This generates
ABS and CSB configuration for each sample.

3) Monte-Carlo averaging: Once ABS and CSB compu-
tation is performed for sufficient sample UE location
snapshots, the results are averaged over all samples.

Time-scale and dynamic eICIC: There are two important
considerations for the reconfiguration frequency of eICIC
parameters. Firstly, since only the traffic distribution statistics
can be obtained from the network, it is imperative that eICIC
computations happen at the same time-scale at which the traf-
fic distribution can be estimated accurately; otherwise, eICIC
changes at a faster time-scale may not provide appreciable
gains while causing unnecessary reconfiguration overhead.
Secondly, since eICIC reconfiguration involves a cluster of
macros and picos, it takes a few minutes to have new set of
traffic information from all the cells [14]. Therefore, the time
scales of changing eICIC parameters for all practical purposes
are in the order of few minutes (typically, 5 − 15 minutes).
Thus, eICIC reconfiguration ought to happen whenever (i)
traffic load changes significantly in some cells, or (ii) or when
a maximum duration elapses since the last reconfiguration. In
addition, if the estimated improvement upon new eICIC re-
computation is small, then the previous eICIC configuration
can be maintained.
C. Fully Distributed SON Architecture

Another implementation option is to distribute eICC compu-
tations at the Network Element (eNB) level and evidently what
is traded off with this approach, as compared to centralized, is
signaling and communication latency. In LTE, the X2 interface
can be used to interconnect eNBs and this interface has been
the subject of extensive standardization when it comes to
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interference management. The main challenge in distributed
approach comes from X2 latency and asynchrony.

Using proprietary messages over X2, our solution can be
adapted for in-network computation where the macro and
picos use their local computational resources to obtain a
desired solution. We provide a broad outline in the following.
The key to achieving this is our dual based implementation
of ABS-RELAX. Suppose the optimization task has to be
performed periodically or over a time-window of interest.
Then, a distributed implementation involves the following
high-level steps. (i) Macros and picos generate UE samples
in the cells based on traffic/SINR distribution of UEs in the
time-window of interest; the sample data is exchanged between
neighboring macro-pico pairs. (ii) Algorithm 1 is run in a
distributed manner, where, in each iteration, macros and picos
exchange dual variables µp,m and λu’s for relevant UEs. This
exchange allows macros and picos to update primal variables
(for themselves and also candidate UEs) locally. (iii) Finally,
note that the rounding step and UE association in Algorithm 2
can be performed locally. If UE association is implemented via
cell-selection bias, the scheme described in Section VIII-A can
be easily carried out locally at each pico (this may require
collecting UE association vector by message exchange with
neighboring macros).

XI. CONCLUDING REMARKS

In this work, we have developed algorithms for optimal
configuration of eICIC parameters based on actual network
topology, propagation data, traffic load etc. Our results using
a real RF plan demonstrates the huge gains that can be had
using such a joint optimization of ABS and UE-association
based on real network data. The broader implication of our
work is that, to get the best out of wireless networks, networks
must be optimized based on real network data.
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2004.

[19] A. Stolyar and H. Viswanathan. Self-organizing dynamic fractional
frequency reuse in ofdma systems. In INFOCOM, pages 691–699. IEEE,
2008.

[20] T. Tran, Y. Shin, and O. Shin. Overview of enabling technologies for
3GPP LTE-Advanced. EURASIP J. Wireless Comm. and Networking,
2012.

[21] Q. Wu and E. Esteves. The CDMA2000 high rate packet data system.
Chapter 4 of Advances in 3G Enhanced Technologies for Wireless
Communications, March 2002.

APPENDIX A
PROOF OF PROPOSITION 1

We will reduce SUBSET-SUM to an instance of OPT-
ABS. Since SUBSET-SUM is NP-hard, the result then follows
immediately. We provide sketch of the reduction below.

The SUBSET-SUM problem is the following: given a set of
integers {w1, w2, . . . , wn} with sum W , is there a non-empty
subset whose sum is W/2?

To obtain the reduction, we consider a HetNet with a single
macro, a single interfering pico, n + 1 UEs, and Nsf = 2.
For UE-u, 1 ≤ u ≤ n, the weight is wu (corresponding to
SUBSET-SUM) , the pico rates are identical and rpicou = 1/2,
the macro rates are identical and rmacrou = 1. For UE u =
n+1, the weight is wn+1 =W/2, rpicon+1 = 0 and rmacron+1 = 1.
Suppose all non-ABS rates are zero. Clearly, the number of
ABS subframes can be either zero or one because UE-n+1 can
receive data only from macro. If ABS=0, then the total utility
can shown to be W ln(2/W ) +

∑
u wu lnwu. On the other

hand, if ABS=1, then let P be the set set of UEs associated
to pico and let their total weight be Wp. Similarly, let M be
set of UEs (from UEs-1 through n) that are associated with
macro and let their total weight be Wm =W−Wp. User-n+1
if always associated to the macro. Now note that, when rates
are identical, maximizing weighted sum of logarithm results
in a UE’s optimal “mean” airtime proportional to its weights.
From this, one can show that the total utility is

Wp ln(
1
Wp

) + (Wm + Wm

2 ) ln( 1

Wm+
Wm

2

+
∑
u

wu lnwu) ,

where Wp+Wm =W . Using convex optimization principles,
one can show that the above quantity is maximized if we
can find a set P such that Wp = W/2. In that case the
optimal utility is 3W/2 ln(1/W ) +

∑
u wu lnwu. Thus, the

SUBSET-SUM problem reduces to asking: is there a solution
to this instance of OPT-ABS with optimal utility larger than
or equal to 3W/2 ln(1/W ) +

∑
u wu lnwu? The reduction is

now complete.

APPENDIX B
PROOF OF PROPOSITION 2

We now make the following technical assumption for the
proof. The assumption essentially says that every macro (pico)
has at least one UE that is not covered by any pico (macro).

http://dx.doi.org/10.1109/JSAC.2010.101209
http://dx.doi.org/10.1109/JSAC.2010.101209
http://dx.doi.org/10.1109/TWC.2010.04.090256
http://dx.doi.org/10.1109/TWC.2010.04.090256
http://dx.doi.org/10.1109/TWC.2010.04.090256
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Assumption 1. For every macro-m (pico-p), there is at least
one UE that gets non-zero data rate only from macro-m (pico-
p).

We will use the following additional notations in the fol-
lowing. We will denote by Wm as total weight of all candidate
UEs of the macro-m, i.e., Wm =

∑
u∈Um wu. We similarly

define Wp for pico-p. We also define K = M + P + 2I for
convenience where I is the total interfering macro-pico pairs.
Also Ip is the number of interfering macros of pico-p and Im
is the number of interfered picos of macro-m.

We will simply provide a proof sketch and avoid repeating
the calculations in [13].

Proof of Part (i): As in [13], the dual update iteration

pt+1 = (pt + γgR(zt))
+ ,

can be used to show that,

D(p̂T )−D(p∗) ≤
‖p∗‖2 − ‖p0‖2

2γT
+
γM

2
,

where ‖gR(zt)‖2 ≤M for some positive constant M . In our
case, a moment’s reflection shows that,

‖gR(zt)‖2 ≤ NR2
max + IN2

sf +MN2
sf + 2PN2

sf

= NR2
max +KN2

sf (29)

where Rmax is the maximum throughput a UE can get in
any iteration and we can choose Rmax = Nsfrmax as
a bound. Since, we can always start with arbitrarily small
initial value of the dual variables, we have upon substituting
Rmax = rmaxNsf ,

D(p̂T )−D(p∗) ≤
‖p∗‖2

2γT
+
γN2

sf

2
(Nr2max +K) (30)

All that remains is to bound ‖p∗‖2.

Lemma B.1. Under Assumption1, the following bound holds:

‖p∗‖2 ≤ ‖W‖
2

N2
sf

(1 + 2Imax +
Umax

rmin
) . (31)

Proof. We roughly outline how to bound this quantity. First
note that, under optimality

R∗u ≥ Nsf min(wuru
Wmu

, wuru
Wpu

) ,

since in the worst case if all competing UEs of UE-u get
assigned to the same macro-mu (pico-pu), then UE-u would
still get a throughput of Nsfwuru/Wmu

(Nsfwuru/Wpu ) to
maximize the log-utility of macro-mu (pico-pu). From the
duality theory, it follows that

λ∗u =
wu
R∗u
≤ max(Wmu

,Wpu)

Nsfru
,

and thus∑
u

λ∗u
2 ≤ 1

rminN2
sf

∑
m,p

[UmW
2
m + UpW

2
p ] ≤

Umax‖W‖2
rminN2

sf
,

(32)

where W denotes the vector of Wm’s and Wp’s across all
macro-m and all pico-p, Umax denotes the maximum number
of candidate UEs in a macro or pico.

For bounding the other dual variables, First note that,

z∗ = argmax
z
L(z,p∗) (33)

since there is no duality-gap.

To bound β∗m, consider the term
∑
u∈Um(λ∗ur

macro
u − β∗m)

in the expansion of L(z,p∗). By Assumption 1, for some u′ ∈
Um, x∗u′ > 0, and thus, for (33) to hold, it must be that

λ∗u′r
macro
u′ − β∗m ≥ 0

from which it follows that,

β∗m ≤ max
u∈Um

[ruλ
∗
u] ≤ max

u∈Um

[
max(Wmu

,Wpu)

Nsf

]
≤ max[Wm, {Wp}p∈Im ]

Nsf
.

Similarly, it can be shown that,

β∗p ≤
max

[
Wp, {Wm}m∈Ip

]
Nsf

, and, µ∗p,m ≤
max[Wp,Wm]

Nsf
.

Also α∗ satisfies the same bound as β∗p . Combining all the
above ∑

m,p

[β∗m
2 + β∗p

2 + α∗p
2 + µ∗p,m

2]

≤ 1
N2

sf

∑
m

[W 2
m(1 + 3Im) +

∑
p

W 2
p (1 + 2Im)]

≤ (1+3Imax)‖W‖2
N2

sf
(34)

where W denotes the vector of Wm’s and Wp’s across all
macro-m and all pico-p, Imax denotes the maximum number
of interferers of a cell. since each W 2

m could be counted at
most 1+ 3Im times based on the bounds and each W 2

p could
be counted at most 1 + 2Ip times. Combining (32) and (34),
the claim follows.

The result in Proposition 2 follows by substituting (31)
into (30).

Proof of Part (ii): This part uses similar steps in [13]. We
skip the details for want of space.

APPENDIX C
PROOF OF PROPOSITION 3

We need the following lemma which essentially follows
from basic algebraic manipulations.

Lemma C.1. The rounding function RndNsf
(x) defined in (23)

satisfies

(i) x1 + x2 ≤ Nsf ⇒ RndNsf
(x1) + RndNsf

(x2) ≤ Nsf

(ii) x(1− 2
Nsf

) ≤ RndNsf
(x) ≤ x(1 + 2

Nsf
)

We provide a proof sketch in the following.
We first prove that the solution produced by Algorithm 2 is

a feasible one. First note that, for any interfering macro-pico
pair (m, p), we have

NsfY
A
p

Y A
p +max(m′∈Ip){Xm′}

+
NsfXm

Xm+max(p′∈Im){Y A
p′ }

≤ NsfY
A
p

Y A
p +Xm

+
NsfXm

Xm+Y A
p

= Nsf

It follows from Lemma C.1 that A∗p +N∗m ≤ Nsf . Similarly,
all the other constraints can be verified in a straight-forward
manner.

The proof of the approximation guarantee is straightforward
and so we only provide a sketch. Suppose we choose T large
enough so that the constraint violations are at most δ′ (this is
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possible by Proposition 2). Consider a macro-m. Now suppose
N̂m ≥ 1. Then, it can be shown that, for any UE-u associated
with macro-m,

xu
∗ =

x̂uN
∗
m

Xm
≥ x̂uN̂m

Xm
(1− 2

Nsf
)

≥ x̂uN̂m

Nm+δ′ (1−
2
Nsf

) ≥ x̂u

1+δ′ (1−
2
Nsf

)

where we have made use of Lemma C.1. Thus by choosing δ′
appropriately as a function of δ, we can ensure x∗u ≥ x̂u/(1+
δ). The same inequality can be shown to hold for the case
when N̂m < 1. Furthermore, since the UE association step
ensures that each UE-u gets associated with a macro only if
the throughput it gets from the macro is higher,

2(1 + δ)R∗u ≥ (R̂)u .

Similar relationship follows for UEs associated with picos.
The result follows from this after additional algebra and using
certain properties of optimal solution including the fact that
optimal fractional solution of ABS-RELAX is better than the
optimal solution to the problem.
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